

СОРБЦИОННО-МЕМБРАННАЯ ТЕХНОЛОГИЯ КОНДИЦИОНИРОВАНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ С ОТВЕРЖДЕНИЕМ ВТОРИЧНЫХ ОТХОДОВ

КОНТАКТЫ

Григоров Виталий Владимирович

Руководитель лаборатории химико-технологических и радиохимических исследований тел. +7 (484) 399-88-03 E-mail: vgrigorov@ippe.ru

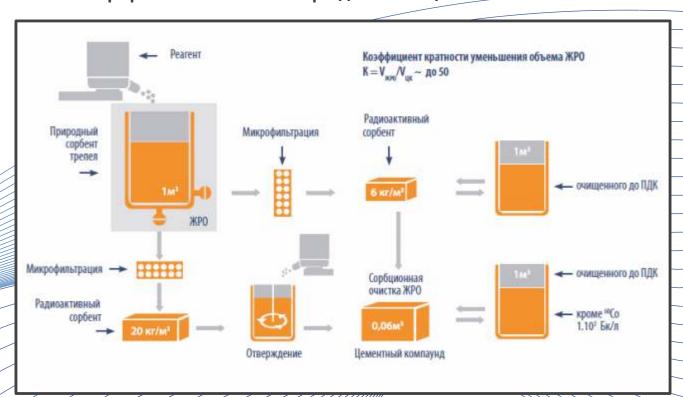
пл. Бондаренко 1, г. Обнинск Калужской обл., 249033

www.ippe.ru

Актуальность

Решение проблемы экологически безопасного обращения срадиоактивными отходами (РАО) атомных станций — важнейшая задача, решение которой может в значительной мере обеспечить возврат доверия общества к атомной энергетике и ее дальнейшее развитие.

В результате предыдущей ядерной деятельности образовался большой объем радиоактивных отходов РАО: к настоящему времени в РФ накоплено около 470 млн. м³ ЖРО и около 74 млн. т ТРО с суммарной активностью 5,8×10¹⁹ Бк.


В последнее время на АЭС внедряются технологии кондиционирования РАО, так как хранение твердых и жидких радиоактивных отходов может рассматриваться только как временная мера.

Описание технологии

Базовый процесс кондиционирования жидких радиоактивных отходов (ЖРО) состоит из трех основных стадий:

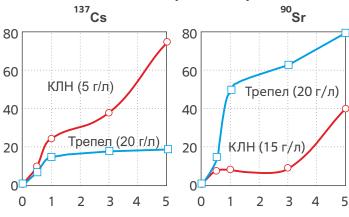
- извлечение радионуклидов из низко- и среднеактивных ЖРО тонкодисперсными сорбентами;
- отделение радиоактивных сорбентов с применением микропористых мембранных фильтров;
- иммобилизация радиоактивных отработанных сорбентов в водоустойчивый долговечный минералоподобный компаунд методом геоцементирования.

Технологическая схема сорбционно-мембранной переработки ЖРО с отверждением в цементный камень

www.ippe.ru 2

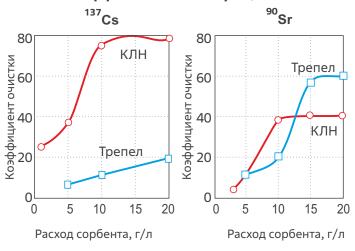
Технология базируется на трех основных инновационных разработках ГНЦ РФ – ФЭИ:

- сорбционное извлечения радионуклидов мелкодисперсными природными сорбентами;
- микрофильтрационное отделение сорбентов и шламов от раствора сприменением микропористых мембранных фильтров;
- кондиционирование отработанных сорбентов, шламов отверждением в водоустойчивые компаунды с применением шлакощелочных вяжущих систем.

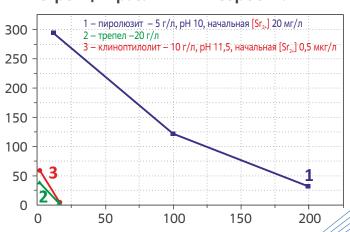

Технология разработана для обезвреживания жидких радиоактивных отходов (ЖРО) низкого и среднего уровня активности, содержащих неорганические и органические соединения в количестве до 25 г/л.

СОРБЕНТЫ:

ТРЕПЕЛ – осадочная опал-кристобалитовая порода Зикеевского месторождения Калужской области по ТУ-РСФСР-239-91.


КЛИНОПТИЛОЛИТ — природный цеолит, гидроалюмосиликатами щелочных и щелочноземельных элементов $M_x[(AlO_2)x(SiO_2)y] \times zH_2O$, Холинского месторождения (58% — содержание цеолитов).

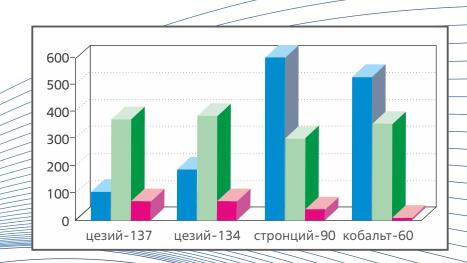
Кинетические кривые сорбции


Продолжительность сорбции Солесодержание – 1,3 г/л, рН – 11,5

Влияние расхода сорбентов на эффективность сорбции

Солесодержание – 1,3 г/л, pH – 11,5 Продолжительность сорбции – 3 часа

Влияние солесодержания на эффективность сорбции стронция различными сорбентами

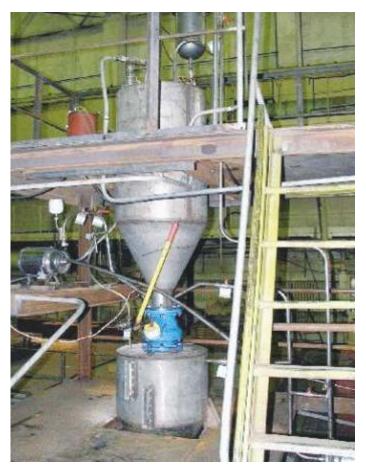

Коэффициенты распределения и емкости сорбентов

Сорбент	Начальная активность, Бк/л	Активность после сорбции, Бк/л	Суммарная степень сорбции, %	Суммарный коэффициент очистки	Суммарный коэффициент распределения, мл/г	Удельная активность сорбента, Бк/кг
Клиноптилолит**	5×10 ⁴	<10	>99,98	>5×10 ³	>1,66×10 ⁵	>1,66×10 ⁶
Трепел* природный	5×10 ⁴	<10	>99,98	>5×10 ³	>1,25×10 ⁵	>1,25×10 ⁶
Трепел* термообр.	5×10 ⁴	<10	>99,98	>5×10 ³	>2,5×10 ⁵	>2,5×10 ⁶
Бентонит**	5×10 ⁴	£10	³99,98	³ 5⋊ 0 ³	³ 1,66×10 ⁵	³ 1,66≯10 ⁶
Трепел** термообр.	5≯10 ⁷	195	99,99	2,56×10 ⁵	8,55×10 ⁶	1,66×10 ⁶
Трепел ** термообр.	6,7×10 ⁹	320	99,999995	2,1×10 ⁷	7×10 ⁵	2,23×10 ¹¹

Сорбент введен 2 раза (*), 3 раза (**).

Состав дезактивирующих растворов: 5 % NaOH+0,1 % KMnO₄; 5 % HNO₃+0,2 % $H_2C_2O_4$.

Эффективность извлечения радионуклидов из реальных ЖРО ГНЦ РФ – ФЭИ модифицированными сорбентами при мембранном фильтровании


Метод геоцементирования основан на создании неорганических вяжущих систем (ВС) нового поколения, которые обеспечивают синтез химических соединений нефелино-анальцимового ряда, аналогичных природным минералам. Образующиеся компаунды отличаются химической стойкостью к воздействию окружающей среды и механической прочностью, возрастающих при их хранении.

Процесс геоцементирования включает в себя смешивание кондиционированных ЖРО вопределенной последовательности с компонентами ВС (природный силикатный сорбент, глинистый минерал, раствор силиката натрия, мелкомолотый доменный гранулированный шлак).

Показатели эффективности очистки исходных ЖРО и сравнение с предельно-допустимой концентрацией (ПДК)

Радио- нуклиды	Исходные данные ЖРО, Бк/л	Конечные растворы, Бк/л	ПДК, Бк/л
¹³⁷ Cs	3,1×10 ⁴	< 1	11
⁹⁰ Sr	8,3×10	< 5	5
⁶⁰ Co	1,0×10 ³	24	41
Солесодержание <25 г/л			

Опытно-демонстрационная установка по переработке реальных жидких радиоактивных отходов с проектной производительностью по среднеактивным, среднесолевым ЖРО ~ 100 л/ч

Обоснование эксплуатационныхи физико-механических особенностей шлакощелочного камня

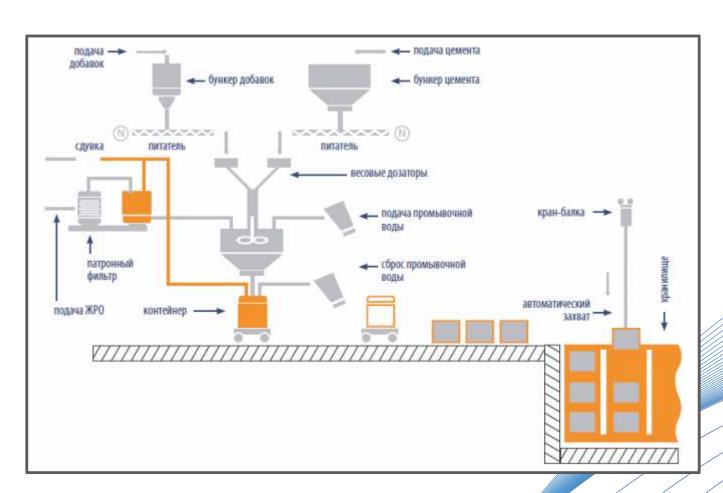
Минералогический состав новообразований:

- продукт структурообразоваения соединения нефелино-анальцимового ряда – аналоги природных минералов;
- низкоосновные силикаты кальция тобермориты (5_3 6)CaO₆SiO₂nH₂O;
- щелочные и щелочно-щелочноземельные гидроалюмосиликаты типа
 (Na, K) $_2$ OAl $_2$ O $_3$ (2, 4)SiO $_2$ 2H $_2$ O
 (Ca, Na $_2$)OAl $_2$ O $_3$ nSiO $_2$ mH $_2$ O и др.

Поровая структура шлакощелочного и портландцементного камня существенно различны. При одинаковой общей пористости капиллярная пористость шлакощелочного камня ниже, а микропористость выше.

Объем субмикропор (8–3 нм) в шлакощелочном камне в 4,9 раз больше, что определяет характер замерзания и общую повышенную морозостойкость шлакощелочного камня.

Контактная зона — при наличии заполнителя в шлакощелочном компаунде щелочные соединения взаимодействуют не только со шлаком, но и с поверхностью заполнителя. При этом с повышением активности этого взаимодействия степень однороности новообразований по всей ширине контактной зоны увеличивается, что способствует ее упрочнению.


www.ippe.ru/

Характерные особенности шлакощелочного цементного камня

- Шлакощелочной цементный камень по прочностным свойствам превосходит портланд-, шлакопортланд- и глиноземистый цемент.
- Более высокая, чем у сульфатостойкого портландцемента, стойкость вряде агрессивных сред: в растворах щелочных и органических соединений, в растворах многих электролитов (NaCl, KCl, Na₂SO₄, MgCl₂, Mg SO₄, CaSO₄), морской воде.

- Более низкие, в 2−3 раза, по сравнению с портландцементом, экзотермия и контракция.
- Повышенная морозостойкость, водонепроницаемость.
- Возможность включения в шлакощелочную систему мелких песков и супесей, в том числе содержащих глинистые и пылеватые частицы.

Внешний вид геоцементного камня, полученного геоцементированием модельного раствора КЖРО

Преимущества технологии

Использование природных сорбентов, которые дешевле и эффективнее синтетических.

Цементирование РАО в одну стадию, что существенно снижает материальные, трудовые и энергетические затраты.

Иммобилизация отработанных природных сорбентов и шламов, содержащих долгоживущие радионуклиды Сs и Sr, в механически прочные водоустойчивые матрицы для последующего безопасного долговременного хранения.

Сравнительные характеристики цементных компаундов

Наименование	Наполнение, массовых %	Механическая прочность, МПа	Скорость выщелачивания, ¹³⁷ Cs, г/см ² сут	-
Геоцемент АО «ГНЦ РФ – ФЭИ»	22–32	17–18	<10 ⁻⁴	
Портландцемент на основе типовых ЖРО	до 10	1–10	10 ⁻³ -10 ⁻⁴	-

Технологический задел

Технологический процесс отработан на макетных образцах установки собъемом реакционной емкости от 1 до 40 литров, которые обеспечивают весь цикл обращения с ЖРО (отмывочных и дезактивирующих растворов, вод спецпрачечной).

Разработаны составы рецептур для кондиционирования шламов и отработанных неорганических сорбентов, рекомендованы перспективные исходные материалы для проведения процесса переработки различных видов ЖРО по новому технологическому способу.

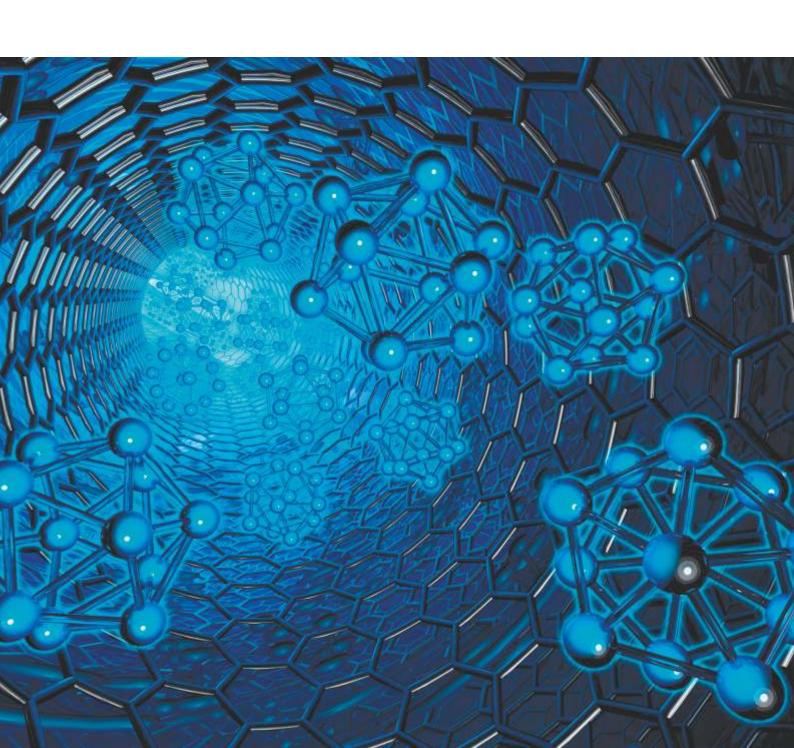
Синтезированы образцы труднорастворимых компаундов с более высокими технологическими характеристиками по качеству компаундов (по сравнению с традиционной портландцементной вяжущей системой).

Достигнуто наполнение синтезированных матриц по шламам и неорганическим сорбентам – до 30 мас %.

Создана опытно-демонстрационная установка ГНЦ РФ — ФЭИ по переработке реальных жидких радиоактивных отходов. Проектная производительность по среднеактивным, среднесолевым ЖРО~100 л/ч.

Предложения к сотрудничеству

Любые не противоречащие интересам партнеров.


Результаты очистки ЖРО Очистка ЖРО от 60 Co (1,7 м 3 A = $2 \cdot 10^5$ Бк/л)

Основные изотопы	Начальная активность А _н , Бк/л	Конечная активность А _К , Бк/л	Нормы допустимых концентраций р/н (НРБ-99), Бк/л
¹³⁷ Cs	3,1·10	< 1	11
⁹⁰ Sr	8,3·10 ⁴	< 5	5
⁶⁰ Co	1,0.10	24	41

Акционерное общество «Государственный научный центр Российской Федерации – ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ имени А. И. Лейпунского»

