Государственная корпорация по атомной энергии «Росатом» А К Ц И О Н Е Р Н О Е О Б Щ Е С Т В О ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ — ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ имени А. И. Лейпунского

 Φ ЭИ – 3300

В. В. Коробейников, В. В. Колесов, А. В. Михалёв, Л. П. Пупко

ИССЛЕДОВАНИЯ ВЛИЯНИЯ СПЕКТРАЛЬНЫХ И ГЕТЕРОГЕННЫХ ЭФФЕКТОВ НА ЭФФЕКТИВНОСТЬ ВЫЖИГАНИЯ МИНОРНЫХ АКТИНИДОВ

УДК 621.039

В.В. Коробейников¹, В.В. Колесов², А.В. Михалёв², Л.П. Пупко¹ ¹ АО «ГНЦ РФ – ФЭИ», г. Обнинск ² Обнинский институт атомной энергетики ИАТЭ НИЯУ МИФИ

Исследования спектральных и гетерогенных эффектов для повышения эффективности выжигания минорных актинидов : Препринт ФЭИ–3300 / Обнинск, АО «ГНЦ РФ-ФЭИ», 2022. 38 с.

Ключевые слова: трансмутация, выжигание минорных актинидов, отработавшее топливо, радиоактивность, биологическая опасность, хранение отработавшего топлива, спектр нейтронов, гетерогенность.

Проведены теоретические исследования спектральных и гетерогенных эффектов для повышения эффективности выжигания минорных актинидах в реакторе на быстрых нейтронах типа БН-600. В рамках исследований решены следующие задачи:

– Проведены расчёты активных зон быстрых реакторов с топливом U^{238} +Am²⁴¹ и Th²³²+Am²⁴¹ для выжигания Am-241;

 Оценено влияние спектральных эффектов на разные варианты выжигания Ат-241 в реакторе типа БН-600;

– Рассчитаны эффекты гетерогенности при выжигании Am-241 в реакторе на быстрых нейтронах с уран-ториевым топливом;

– Проведено моделирование выжигания минорных актинидов при разных способах их размещения в реакторе типа БН-600 показало наиболее эффективные пути утилизации минорных актинидов;

– Исследована эффективность выжигания Am-241 в быстро-тепловой системе на основе реактора типа БH-600.

Theoretical studies of spectral and heterogeneous effects have been carried out to improve the efficiency of burning minor actinides in a fast neutron reactor of the BN-600 type. As part of the research, the following tasks were solved:

– Calculations of cores of fast reactors with fuel U^{238} +Am²⁴¹ and Th²³²+Am²⁴¹ for burning Am-241;

- The influence of spectral effects on different options for burning Am-241 in a BN-600 reactor was evaluated;

- Calculated the effects of heterogeneity in the burning of Am-241 in a fast neutron reactor with uranium-thorium fuel;

- Simulation of the burning of minor actinides with different ways of their placement in a BN-600 reactor showed the most effective ways of utilizing minor actinides;

- The efficiency of burning Am-241 in a fast-thermal system based on a BN-600 type reactor was studied.

СОДЕРЖАНИЕ

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ4
ВВЕДЕНИЕ5
1. Исследование композиций активных зон быстрых реакторов с топливом $U^{238} + Am^{241}$ и Th^{232} + Am^{241} для выжигания и трансмутации Am-2416
1.1 Композиция в ЗБО из U ²³⁸ +Am ²⁴¹ 6
1.2 Композиция в ЗБО из Th ²³² + Am ²⁴¹ 9
1.3 Сравнение от времени облучения изменения концентраций нуклидов с наибольшим вкладом в композициях U ²³⁸ + Am ²⁴¹ , Th ²³² + Am ²⁴¹ 11
2 Сравнение спектральных характеристик разных вариантов выжигания Am-241 в реакторе типа БН-60013
3 Исследования эффектов гетерогенности при трансмутации Am-241 в реакторе на быстрых нейтронах с уран-ториевым топливом
4 Расчётное моделирование выжигания минорных актинидов при разных способах их размещения в реакторе типа БН-600
5 Исследование эффективности трансмутации Ат-241 в быстротепловой системе на основе реактора типа БН-600
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

(ER) EA	_	атомная (ядерная) энергетика
АЭС	_	атомная электростанция
БН	_	реактор на быстрых нейтронах с натриевым
		теплоносителем
ВВЭР	_	водо-водяной энергетический реактор
3MO	_	зона малого обогащения
3CO	_	зона среднего обогащения
ЗБО	_	зона большого обогащения
MA	_	минорные актиниды
МОКС-топливо	_	ядерное топливо из смеси оксидов плутония и
		обедненного урана
TRO	_	отработавшее (облученное) ядерное топливо
РБН	_	реакторы на быстрых нейтронах
TBC	_	тепловыделяющая сборка
ER	_	ядерная энергетика
ЯЭС	_	ядерная энергетическая система

введение

Главной проблемой атомной энергетики на сегодняшний день является работающих утилизация ядерных отходов. В ядерных реакторах накапливаются так называемые минорные актиниды — долгоживущие радиоактивные изотопы америция, кюрия, нептуния. В настоящее время во всем мире обращение с минорными актинидами, как правило, сводится либо к их отправке в хранилища в составе отработанного ядерного топлива, либо к их захоронению в долгосрочных могильниках вместе с продуктами деления. Для существующей и перспективной крупномасштабной ядерной энергетики рассматриваются различные варианты трансмутационного топливного цикла, существенно снижающие опасность минорных актинидов [1] — [26]. Однако в настоящее время долгосрочная стратегия обращение с МА не выбрана ни в одной стране мира. Решение отмеченной выше проблемы пока широко рассматривается только на уровне математического моделирования с использованием современных программных комплексов и доступных ядерных данных. Экспериментальное обоснование выдвигаемых подходов к утилизации МА находится на лабораторном уровне.

Теоретически подходы к решению проблемы МА сводятся к исследованиям эффективности трансмутации в ядерных реакторах разных типов. И в этом направлении единства и согласия не наблюдается. Авторы данной работы являются сторонниками системного подхода к сокращению скорости накопления МА с учётом стратегии развития ядерной энергетики в России и Мире. В работах [25], [27] рассматриваются сценарные исследования и исследуются возможные темпы накопления МА.

В работах [24], [26] приводятся результаты исследований возможности разработки новой активной зоны реактора на быстрых нейтронах, позволяющей обходиться без традиционных видов ядерного топлива (урана или/и плутония) для решения задачи трансмутации минорных актинидов, представляющих основную опасность на значительном временном интервале, что является важной и актуальной задачей. Теоретически это оказывается возможным благодаря тому, что практически все МА имеют конечную критическую массу. Однако при практической реализации таких реакторов возникают проблемы с низкой долей запаздывающих нейтронов, что ухудшает возможность обеспечения безопасности таких реакторов. Отметим — ухудшает, но не закрывает! Другая проблема состоит в том, что для загрузки таких реакторов требуется сразу большое количество минорных актинидов. Третья, но не последняя проблема — это необходимость разработки специальных приёмов загрузки-выгрузки таких реакторов из-за высокого тепловыделения МА.

5

В данной работе проведён ряд исследований, направленных на снижение перечисленных выше проблем трансмутации или, по крайней мере, на их смягчение. В работе приведены результаты решения следующих задач:

1. Исследование композиций активных зон быстрых реакторов с топливом $U^{238} + Am^{241}$ и Th²³² + Am²⁴¹ для выжигания и трансмутации Am-241.

2. Сравнение спектральных характеристик разных вариантов выжигания Am-241 в реакторе типа БH-600.

3. Исследования эффектов гетерогенности при выжигании Am-241 в реакторе на быстрых нейтронах с уран-ториевым топливом.

4. Расчётное моделирование выжигания минорных актинидов при разных способах их размещения в реакторе типа БН-600.

5. Исследование эффективности трансмутации Am-241 в быстротепловой системе на основе реактора типа БH-600.

1. Исследование композиций активных зон быстрых реакторов с топливом $U^{238}+Am^{241}$ и $Th^{232}+Am^{241}$ для выжигания и трансмутации $Am\mathchar`241$

Для исследований использовалась модель реактора типа БН-600, приведённая в [28]. В первом варианте данной модели UOX-топливо заменялось смесью Am-241 с U-238. Во втором — смесью Am-241 с Th-232.

1.1 Композиция в ЗБО из U²³⁸+Am²⁴¹

В таблице 1 приведены результаты изменения нуклидного состава от времени облучения композиции ЗБО, в которой вместо уранового топлива использовалась смесь U-238 и Am-241. В таблице 1 выделены нуклиды с наибольшим вкладом в полное распределение. На рисунке 1 приведены изменения ядерных плотностей U-238 и Am-241.

Из результатов следует, что ядерная плотность Am-241 сокращается достаточно эффективно. Темп сокращения U-238 существенно ниже.

На рисунке 2 приведены результаты изменения эффективного коэффициента размножения от времени облучения при замене UOX-топлива на смесь нуклидов U-238 и Am-241.

Из результатов следует «устойчивость» запаса реактивности, или точнее потенциала выжигания Am-241 с сохранением запаса реактивности на длительный временной интервал. Из результатов, приведённых на рисунке 2 видно, что в начале облучения К_{эф} растёт, а затем падает. Это объясняется воспроизводством плутония из урана-238, а также появлением в результате захвата нейтронов в Am-241 нуклидов, обладающих большей вероятностью деления во всей области энергии по сравнению с Am-241.

Userse	Лет							
ИЗОТОП	0	4	8	12	16	20	24	28
U232		1,44E-10	2,51E-10	1,71E-09	3,00E-09	4,30E-09	4,75E-09	4,61E-09
U23		5,05E-10	9,33E-10	1,21E-08	2,76E-08	4,47E-08	5,74E-08	6,34E-08
U234		2,00E-05	3,11E-05	1,49E-04	2,31E-04	3,05E-04	3,58E-04	3,83E-04
U235		1,77E-07	3,36E-07	5,05E-06	1,27E-05	2,39E-05	3,66E-05	4,87E-05
U236		7,55E-08	8,90E-08	3,50E-07	9,46E-07	2,33E-06	4,85E-06	8,78E-06
U237		4,19E-08	4,06E-08	6,73E-08	8,01E-08	7,85E-08	7,23E-08	6,90E-08
U238	1,83E-02	1,78E-02	1,77E-02	1,69E-02	1,61E-02	1,52E-02	1,43E-02	1,33E-02
U239		4,28E-09	4,26E-09	7,41E-09	9,64E-09	1,10E-08	1,19E-08	1,30E-08
U240		7,34E-14	7,31E-14	2,31E-13	4,12E-13	5,70E-13	7,28E-13	9,39E-13
U241		2,76E-21	2,75E-21	1,60E-20	3,90E-20	6,59E-20	9,88E-20	1,52E-19
Np235		1,12E-11	1,24E-11	4,46E-11	6,13E-11	5,97E-11	5,41E-11	4,26E-11
Np236		4,29E-09	6,14E-09	2,81E-08	4,31E-08	4,96E-08	4,63E-08	3,76E-08
Np237		1,24E-04	1,50E-04	2,70E-04	2,80E-04	2,58E-04	2,18E-04	1,72E-04
Np238		1,98E-08	2,40E-08	7,86E-08	1,12E-07	1,24E-07	1,23E-07	1,14E-07
Np239		6,19E-07	6,16E-07	1,07E-06	1,39E-06	1,59E-06	1,72E-06	1,88E-06
Pu236		4,43E-10	5,45E-10	2,08E-09	3,22E-09	3,73E-09	3,63E-09	3,11E-09
Pu237		5,23E-09	6,23E-09	2,12E-08	3,11E-08	3,30E-08	2,96E-08	2,43E-08
Pu238		1,32E-03	1,59E-03	3,13E-03	3,70E-03	3,81E-03	3,52E-03	2,96E-03
Pu239		3,03E-04	3,64E-04	8,69E-04	1,22E-03	1,51E-03	1,71E-03	1,80E-03
Pu240		4,24E-06	5,91E-06	3,28E-05	7,16E-05	1,31E-04	2,09E-04	2,99E-04
Pu241		7,08E-08	1,07E-07	9,80E-07	2,82E-06	6,50E-06	1,25E-05	2,10E-05
Pu242		3,27E-04	3,87E-04	8,20E-04	1,06E-03	1,21E-03	1,26E-03	1,23E-03
Pu243		1,41E-09	1,67E-09	6,51E-09	1,15E-08	1,61E-08	1,97E-08	2,29E-08
Pu244		9,87E-11	1,66E-10	2,28E-09	7,21E-09	1,74E-08	3,39E-08	5,73E-08
Am241	2,12E-02	1,80E-02	1,73E-02	1,26E-02	9,40E-03	6,57E-03	4,36E-03	2,74E-03
Am242		1,05E-06	1,01E-06	1,33E-06	1,36E-06	1,15E-06	8,85E-07	6,52E-07
Am342		1,51E-04	1,74E-04	2,91E-04	3,05E-04	2,72E-04	2,15E-04	1,53E-04
Am243		6,63E-06	9,43E-06	4,95E-05	9,53E-05	1,50E-04	2,00E-04	2,40E-04
Am244		1,40E-11	2,00E-11	1,90E-10	5,00E-10	9,52E-10	1,49E-09	2,10E-09
Am344		9,01E-12	1,28E-11	1,22E-10	3,22E-10	6,12E-10	9,57E-10	1,35E-09
Cm240		1,97E-12	1,21E-12	3,28E-12	4,28E-12	2,92E-12	3,18E-12	1,84E-12
Cm241		2,05E-10	1,91E-10	4,03E-10	5,23E-10	4,59E-10	3,48E-10	2,49E-10
Cm242		2,17E-04	2,07E-04	2,61E-04	2,71E-04	2,32E-04	1,81E-04	1,34E-04
Cm243		4,15E-06	4,77E-06	9,66E-06	1,37E-05	1,59E-05	1,57E-05	1,38E-05
Cm244		2,25E-07	3,80E-07	4,87E-06	1,46E-05	3,32E-05	6,03E-05	9,42E-05
Cm245		2,96E-09	6,01E-09	1,91E-07	8,63E-07	2,71E-06	6,38E-06	1,23E-05

Таблица 1. Изменение концентраций нуклидов от времени облучения композиции ЗБО из $U^{238} + Am^{241}$

Изотон		Лет											
1301011	0	4	8	12	16	20	24	28					
Cm246		2,12E-11	5,25E-11	4,50E-09	3,27E-08	1,54E-07	5,15E-07	1,35E-06					
Cm247		1,01E-13	3,05E-13	6,72E-11	7,47E-10	4,98E-09	2,20E-08	7,33E-08					
Cm248		5,06E-16	1,85E-15	1,11E-12	1,98E-11	1,98E-10	1,23E-09	5,60E-09					
Cm249		2,53E-22	9,23E-22	1,02E-18	2,47E-17	2,99E-16	2,23E-15	1,20E-14					
Cm250		1,72E-25	7,67E-25	2,12E-21	8,69E-20	1,64E-18	1,76E-17	1,33E-16					

Продолжение табл. 1

Изменение концентраций U-238 и Am-241 в 3БО

Рис. 1. Изменение концентраций U-238 и Ат-241 от времени облучения

Рис. 2. Изменение $K_{_{3\varphi}}$ U-238 и Am-241 от времени облучения в системе из $U^{238} + Am^{241}$

1.2 Композиция в ЗБО из Th²³² + Am²⁴¹

В данной модели исходное UOX-топливо замещено смесью Th-232 и Am-241. Торий использовали по двум причинам:

1) в отличие от U-238, торию «далеко» до наработки МА при захвате нейтронов;

2) торий после захвата нейтрона переходит в U-233, который даёт дополнительные нейтроны для трансмутации Am-241.

В таблице 2 приведены результаты изменения нуклидного состава для данной композиции от времени. Выделены нуклиды с наибольшим вкладом в полное распределение.

На рисунке 3 приведены результаты изменения эффективного коэффициента размножения от времени облучения при замене UOX-топлива на смесь нуклидов Th-232 и Am-241.

Таблица	2.	Изменение	концентраций	нуклидов	0Т	времени	облучения
композиц	ции	3БО из Th-2	32 и Am-241				

Изотоп	0 лет	4 года	8 лет	12 лет	16 лет	20 лет	22 года
Th227		8,20E-13	2,72E-12	5,42E-12	8,61E-12	1,15E-11	1,27E-11
Th228		8,15E-09	3,70E-08	8,75E-08	1,55E-07	2,23E-07	2,51E-07
Th229		2,23E-09	7,72E-09	1,58E-08	2,62E-08	3,79E-08	4,39E-08
Th230		9,18E-08	1,70E-07	2,65E-07	3,71E-07	4,74E-07	5,23E-07
Th232	1,16E-02	1,13E-02	1,10E-02	1,06E-02	1,01E-02	9,47E-03	9,15E-03
Th233		3,90E-09	4,70E-09	6,33E-09	7,65E-09	8,82E-09	9,47E-09
Th234		2,46E-12	3,68E-12	6,95E-12	1,08E-11	1,54E-11	1,85E-11
Pa231		7,53E-06	1,21E-05	1,58E-05	1,76E-05	1,72E-05	1,62E-05
Pa232		1,86E-09	3,71E-09	6,77E-09	9,67E-09	1,17E-08	1,23E-08
Pa233		6,79E-06	8,17E-06	1,10E-05	1,33E-05	1,53E-05	1,64E-05
U232		7,70E-07	2,37E-06	4,83E-06	7,69E-06	1,00E-05	1,08E-05
U233		2,37E-04	4,09E-04	5,64E-04	6,82E-04	7,54E-04	7,73E-04
U234		2,49E-05	9,20E-05	1,84E-04	2,85E-04	3,76E-04	4,13E-04
U235		2,47E-07	2,02E-06	7,29E-06	1,74E-05	3,19E-05	4,02E-05
U236		2,39E-09	3,92E-08	2,60E-07	1,04E-06	2,95E-06	4,54E-06
U237		3,90E-13	7,85E-12	7,28E-11	3,71E-10	1,30E-09	2,22E-09
U238		1,49E-09	5,18E-09	1,06E-08	1,74E-08	2,47E-08	2,84E-08
U239		4,69E-16	2,03E-15	5,81E-15	1,22E-14	2,12E-14	2,71E-14
U240		1,31E-20	7,36E-20	2,92E-19	7,94E-19	1,73E-18	2,45E-18
U241		6,24E-28	4,34E-27	2,42E-26	8,44E-26	2,29E-25	3,64E-25
Np235		1,20E-11	2,66E-11	4,65E-11	5,23E-11	4,47E-11	4,40E-11
Np236		5,42E-09	1,65E-08	3,05E-08	4,03E-08	4,09E-08	3,82E-08
Np237		1,13E-04	1,88E-04	2,23E-04	2,19E-04	1,89E-04	1,69E-04

Продолжение табл. 2

Изотоп	0 лет	4 года	8 лет	12 лет	16 лет	20 лет	22 года
Np238		2,25E-08	4,66E-08	7,70E-08	9,65E-08	1,03E-07	1,03E-07
Np239		8,15E-12	2,71E-11	6,11E-11	1,08E-10	1,58E-10	1,82E-10
Pu236		5,78E-10	1,51E-09	2,77E-09	3,61E-09	3,58E-09	3,58E-09
Pu237		8,35E-09	1,68E-08	2,69E-08	3,39E-08	3,31E-08	3,10E-08
Pu238		1,47E-03	2,56E-03	3,34E-03	3,70E-03	3,60E-03	3,39E-03
Pu239		2,25E-05	8,48E-05	1,88E-04	3,13E-04	4,23E-04	4,62E-04
Pu240		1,29E-06	3,40E-06	8,98E-06	2,14E-05	4,31E-05	5,75E-05
Pu241		6,44E-08	2,06E-07	5,17E-07	1,20E-06	2,55E-06	3,61E-06
Pu242		3,70E-04	6,48E-04	9,08E-04	1,11E-03	1,21E-03	1,23E-03
Pu243		2,02E-09	4,38E-09	8,63E-09	1,35E-08	1,84E-08	2,08E-08
Pu244		1,52E-10	9,84E-10	3,77E-09	1,07E-08	2,38E-08	3,33E-08
Am241	2,12E-02	1,74E-02	1,43E-02	1,11E-02	7,95E-03	5,33E-03	4,25E-03
Am242		1,26E-06	1,29E-06	1,39E-06	1,27E-06	1,05E-06	9,29E-07
Am242m		1,68E-04	2,55E-04	2,98E-04	2,89E-04	2,41E-04	2,10E-04
Am243		8,71E-06	2,93E-05	6,57E-05	1,16E-04	1,71E-04	1,96E-04
Am244		2,30E-11	9,60E-11	3,00E-10	6,77E-10	1,23E-09	1,57E-09
Am245		1,48E-11	6,17E-11	1,93E-10	4,35E-10	7,89E-10	1,01E-09
Cm240		2,18E-12	2,40E-12	4,41E-12	3,75E-12	2,60E-12	2,97E-12
Cm241		3,51E-10	3,84E-10	5,04E-10	5,40E-10	4,43E-10	3,91E-10
Cm242		2,59E-04	2,55E-04	2,74E-04	2,56E-04	2,12E-04	1,88E-04
Cm243		5,34E-06	8,70E-06	1,23E-05	1,53E-05	1,64E-05	1,61E-05
Cm244		3,43E-07	2,17E-06	7,91E-06	2,11E-05	4,41E-05	5,93E-05
Cm245		5,20E-09	6,39E-08	3,74E-07	1,45E-06	4,10E-06	6,28E-06
Cm246		4,33E-11	1,09E-09	1,09E-08	6,63E-08	2,76E-07	5,06E-07
Cm247		2,42E-13	1,20E-11	1,97E-10	1,79E-09	1,03E-08	2,18E-08
Cm248		1,41E-15	1,42E-13	3,98E-12	5,67E-11	4,82E-10	1,22E-09
Cm249		8,77E-22	1,12E-19	4,42E-18	8,07E-17	8,51E-16	2,39E-15
Cm250		6,87E-25	1,74E-22	1,17E-20	3,46E-19	5,59E-18	1,91E-17

Для данной системы с составом Th²³² +Am²⁴¹ вместо UOX так же, как и для смеси U^{238} + Am²⁴¹, следует «устойчивость» $K_{3\phi}$ для длительного облучения с сохранением запаса реактивности на временной интервал. Возрастание $K_{3\phi}$ для обеих смесей объясняется появлением нуклидов с более высоким сечением деления по сравнению с исходным составом.

На рисунке 4 приведены изменения ядерных плотностей Th-232 и Am-241 от времени облучения. Из результатов следует, что ядерная плотность Am-241 сокращается достаточно эффективно. Темп сокращения Th-232 существенно ниже.

Рис. 3. Изменение $K_{_{3\varphi}}$ для системы ЗБО с $Th^{_{232}} + Am^{_{241}}$ топливом от времени облучения

Изменение концентраций Th-232 и Am-241 в композиции из Th-232 + Am-241

Рис. 4. Изменение концентраций Th-232 и Am-241

1.3 Сравнение от времени облучения изменения концентраций нуклидов с наибольшим вкладом в композициях $U^{238} + Am^{241}$, $Th^{232} + Am^{241}$

На рисунках 5 — 7 приведены изменения ядерных плотностей нуклидов от времени облучения, имеющих наибольшую плотность по сравнению с остальными, содержащихся в таблицах 1 и 2.

Рис. 5. Сравнение темпов выгорания Am-241 для разных топливных композиций реактора типа БH-600

Из результатов видно, что подмешивание урана или тория увеличивает темп выгорания Am-241 по сравнению с полной загрузкой Am-241 ЗБО реактора типа БH-600. Более существенное влияние на темп выжигания Am-241 проявляется в топливной композиции америция с Th-232. Что, возможно, объясняется более низкой возможностью Th-232 перейти в Am-241 в результате нуклидных превращений по сравнению с U-238.

На рисунке 6 приведены результаты расчёта накопления Pu-238 в зависимости от времени облучения. На рисунке 7 приведены результаты сравнения накопления Cm-242 для двух систем — U²³⁸ + Am²⁴¹ и Th²³² + Am²⁴¹.

Изменение коцентрации Ри-238

Рис. 6. Изменение ядерной плотности Ри-238 от времени облучения

Из рисунков 6 и 7 следуют довольно близкие результаты для систем с добавлением U-238, либо Th-232 по накоплению Pu-238 и Cm-242.

На рисунке 8 показано накопление U-232. В варианте с добавлением Th-232, U-232 накапливается на четыре порядка больше, чем в варианте с U-238, что достаточно очевидно.

Рис. 7. Изменение ядерной плотности Cm-242 от времени облучения

2 Сравнение спектральных характеристик разных вариантов выжигания Am-241 в реакторе типа БH-600

На рисунке 9 приведена зависимость от энергии сечений захвата и деления нейтронов. Из рисунка видно, что эффективность деления и захвата нейтронов ядрами Am-241 существенно зависит от энергии нейтрона. В широкой области энергий вероятность захвата нейтронов существенно выше

вероятности деления. И только при энергиях выше примерно 0,8 МэВ сечения деления становятся выше сечения захвата. Таким образом, чем выше средняя энергия нейтронов в спектре реактора, тем выше вероятность деления америция, что является желательным при его выжигании.

Рис. 9. Зависимость сечения деления и сечения захвата Am-241 от энергии

Кроме того, Am-241 имеет небольшую критическую массу, что позволяет использовать его в качестве топлива в ядерном реакторе. Исследования такой возможности приведены в работах [23], [24], [26].

Привлекательными для выжигания Am-241 в связи с этим являются реакторы на быстрых нейтронах. Для исследований влияния спектральных характеристик на эффективность выжигания Am-241 рассматривались следующие варианты загрузки реактора на быстрых нейтронах типа БH-600:

1. ЗМО1Ат — в ЗМО реактора типа БН-600 содержится одна ТВС с Ат-241 в центре зоны. Остальные ТВС загружены оксид-урановым топливом (UOX).

2. UOX — полная загрузка оксидом урана зон реактора типа БН-600.

3. ЗМО7Ат — в ЗМО реактора типа БН-600 семь ТВС с Ат в центре зоны, остальные загружены UOX-топливом.

4. ЗБОАт — ЗБО реактора типа БН-600 полностью загружена Ат.

5. ЗМОАт — ЗМО реактора типа БН-600 полностью загружена Ат.

6. ЗБОТh — ЗБО реактора типа БН-600 полностью загружена смесью Th+Am.

7. 3MOTh — 3MO реактора типа БН-600 полностью загружена смесью Th+Am.

8. ЗБО U238 — ЗБО реактора типа БН-600 полностью загружена U²³⁸ + Am.

9. ЗМОU238 — ЗМО реактора типа БН-600 полностью загружена U^{238} +Ат.

10. ЗБОМА — ЗБО реактора типа БН-600 полностью загружена МА.

11. ЗМОМА — ЗМО реактора типа БН-600 полностью загружена МА. Рассчитывались следующие средние спектральные характеристики:

Eav — средняя по спектру нейтронов энергия;

Fis — среднее по спектру нейтронов сечение деления в Am-241;

Сар — среднее по спектру нейтронов сечение захвата в Am-241;

Pfis — средняя по спектру нейтронов вероятность деления при поглощении в Am-241;

ALFA — среднее по спектру нейтронов отношение сечения захвата к сечению деления.

На рисунке 10 приведены результаты расчёта спектров систем, содержащих одну или семь ТВС, загруженных Am-241 в металлической форме. Спектры рассчитаны для сборок, содержащих Am-241. Из результатов видно, что спектр семи сборок более «жёсткий», чем для одной.

Рис. 10. Сравнение энергетических спектров для одной и семи сборок с Am-241 в ЗМО реактора типа БН-600

На рисунке 11 приведены результаты расчёта спектров систем, содержащих семь TBC с Am241 и полностью загруженных Am241 зоны ЗМО. Спектры рассчитаны для сборок, содержащих Am-241. Из результатов следует, что при семи TBC с Am и полной загрузке Am-241 разница в

спектрах невелика. Это важный результат. В системах, содержащей семь сборок с америцием и полностью им загруженных, скорость превращения Am-241 в осколки будет практически одинаковой!

На рисунке 12 приведены средние энергии нейтронов на спектрах одиннадцати описанных выше систем для исследований влияния спектральных характеристик на эффективность выжигания Am-241 с различными вариантами загрузки реактора типа БH-600.

Рис. 11. Сравнение энергетических спектров для ЗМО реактора типа БН-600

Рис. 12. Средняя по спектру энергия нейтрона при разных условиях облучения

Из результатов следует, что наибольшая средняя энергия оказалась в системах, загруженных Am-241, набором MA из OЯT BBЭР, а также в системах, загруженных смесями Am²⁴¹ + Th²³² и Am²⁴¹ + U²³⁸. Практически такую же среднюю энергию имеет система с семью TBC с Am-241 (3MO7Am). Спектр в «семерике» TBC с Am-241 имеет аналогичную структуру системе с 3MO, полностью загруженной Am-241 (3MOAm) поэтому значения средних энергий в них практически одинаковые. Напомним, что чем выше средняя энергия в спектре, тем больше Am-241 после облучения превратится в осколки. То есть тем успешнее будет выжигание Am-241.

На рисунке 13 приведено среднее на спектре сечение деления америция-241. По виду зависимости на графиках рис. 12 и 13 совпадают, что и понятно из рисунка 9 с зависимостью сечений захвата и деления для Ат-241. Чем выше средняя энергия нейтрона при взаимодействии с Am-241, тем выше и сечение деления. Что и обеспечит наиболее эффективное выжигание.

Рис. 13. Среднее по спектру сечение деления Am-241 при разных условиях его облучения

На рисунке 14 приведено среднее на спектре нейтронов сечение поглощения. Здесь более выгодным является низкое сечение захвата нейтронов при взаимодействии с Am-241. По крайней мере это так, если мы рассматриваем реактор на быстрых нейтронах без устройств, специально смягчающих спектр нейтронов.

На рисунке 15 приведено среднее на спектре нейтронов — параметр ALFA. ALFA — хорошо известная величина, равная отношению сечения захвата к сечению деления. Чем значение ALFA ниже, тем больше нейтронов вызывает деление Am-241.

Рис. 14. Среднее по спектру сечение захвата нейтронов при разных условиях облучения в Am-241

Рис. 15. Среднее по спектру отношение сечения захвата к сечению деления при разных условиях облучения

На рисунке 16 приведена вероятность деления Am-241 (pfis) при поглощении нейтронов. Чем выше эта величина, тем больше америция превратится в осколки, что можно считать «идеальным» вариантом его выжигания.

В таблице 3 собраны численные значения параметров, приведённых на рисунках 12—16.

Рис.16. Средняя по спектру вероятность деления Am-241 при разных условиях облучения

Таблица 3. Спектральные средние характеристики при облучении в системах с различными типами загрузки

Система/зона	Eav	fis	cap	pfis	alfa
3MO1Am	6,66E-01	3,92E-01	1,26E+00	2,37E-01	3,21E+00
3MO7Am	9,81E-01	5,94E-01	8,69E-01	4,06E-01	1,46E+00
ЗБОАт	1,01E+00	6,04E-01	7,78E-01	4,37E-01	1,29E+00
ЗБОМА	9,39E-01	5,80E-01	8,03E-01	3,82E-01	1,62E+00
ЗБОТh	7,93E-01	4,61E-01	1,07E+00	3,00E-01	2,33E+00
ЗБОU238	7,46E-01	4,27E-01	9,40E-01	3,12E-01	2,20E+00
UOX	5,48E-01	3,32E-01	1,52E+00	1,80E-01	4,57E+00
3MOAm	1,02E+00	6,16E-01	7,54E-01	4,50E-01	1,22E+00
3MOMA	9,53E-01	5,89E-01	7,85E-01	4,29E-01	1,33E+00
3MOU-238	7,57E-01	4,33E-01	9,16E-01	3,21E-01	2,11E+00
3MOTh-232	8,11E-01	4,74E-01	8,83E-01	3,49E-01	1,87E+00

Если сравнить распределение средней энергии и средние сечения деления, то поведение этих характеристик аналогичны друг другу. Особенно интересным является тот факт, что для «семерика» и полной загрузке америцием результаты практически эквивалентны. То есть, «семерик» ведёт себя так же, как и вся зона, если её загрузить полностью Am. Другими словами, относительный темп перевода Am-241 подобен варианту полной загрузки зоны реактора америцием-241. Если же америцием загружена одна TBC, то спектр оказывается подобен UOX-загрузке. Темп перевода в осколки в этом случае Am-241 будет, естественно, ниже.

На рисунке 17 для наглядности приведены сразу все значения рассмотренных выше параметров эффективности выжигания Ат-241 на одном графике.

Результаты анализа выбора способа трансмутации

3 Исследования эффектов гетерогенности при трансмутации Am-241 в реакторе на быстрых нейтронах с уран-ториевым топливом

Исследовались два варианта модели быстрого реактора малой мощности типа РБЕЦ [29] с оксидным топливом с добавлением одинакового количества по массе оксида америция.

В варианте № 1 оксид америция гомогенно примешивался к уранториевому топливу активной зоны реактора (U-Th цикл gom).

Вариант № 2 — гетерогенный с разбиением активной зоны на две подзоны: одна с окисью америция, другая с уран-ториевым оксидным топливом (U-Th цикл get). Активная зона разбивалась на два равных объема, и америций из внешней зоны переносился во внутреннюю, а уран-ториевое топливо наоборот — во внешнюю. По массе урана-235 и тория-232 вариант № 2 совпадал с вариантом № 1.

В таблице 4 приведены средние на спектрах вариантов 1 и 2 характеристики, подобные приведённым в предыдущем разделе. Характеристики гетерогенного варианта размещения обеспечивают лучшее выжигание Am-241 по сравнению с гомогенным размещением Ат-241. Эти выводы показаны на рисунке 18 и демонстрируют изменение массы Am-241 в этих двух вариантах его выжигания.

Из результатов видно, что выжигание америция имеет более высокий темп для зоны с гетерогенным размещением америция. Таким образом,

Рис. 17. Полный набор критериев для сравнения разных условий облучения

гетерогенное размещение Am-241 позволяет улучшить процесс его выжигания.

Таблица 4. Интегральные по спектру характеристики активных зон реактора малой мощности типа РБЕЦ

Характеристика	U-Th цикл gom	U-Th цикл get
Ecp	3,28E-01	3,83E-01
σfis	3,64E-01	4,43E-01
σcapt	1,09E+00	9,84E-01
α	2,99E+00	2,22E+00
Pfis	2,51E-01	3,10E-01

Сравнение вариантов с гомогенным и гетерогенным размещением Ат-241

Рис. 18. Изменение массы Ат-241 в разных вариантах выжигания и трансмутации

4 Расчётное моделирование выжигания минорных актинидов при разных способах их размещения в реакторе типа БН-600

Проведены исследования по выжиганию минорных актинидов (МА) в реакторе, который вместо традиционных видов ядерного топлива — урана или/и плутония — использует полный набор МА, извлекаемых из ОЯТ реакторов на тепловых нейтронах. Преимущества реализации такого подхода к трансмутации МА состоят в том, что при таком подходе происходит утилизация долгоживущих отходов и при этом производится энергия, которую можно использовать, например, для производства электричества. Кроме того, если использовать, например, реактор с урановым или МОХ-топливом для трансмутации, то кроме выжигания «чужих» минорных актинидов, он дополнительно наработает «свои». В случае топлива из одних минорных актинидов будут выжигаться только «свои».

На рисунках 19 и 20 приведены результаты зависимости изменения ядерных плотностей нуклидов от времени, вносящих наибольший вклад в состав МА в ЗБО при условии, что в первом случае МА в металлической форме находятся только в ЗБО, в других зонах UOX, а во втором варианте МА во всех зонах.

Рис. 19. Изменение ядерных концентраций нуклидов МА в ЗБО при условии их нахождения только в ЗБО

Рис. 20. Изменение ядерных концентраций нуклидов МА в 3БО при условии их нахождения во всех зонах

Результаты показывают очень близкие значения для обоих вариантов, что, по-видимому, связано с тем, что для обоих случаев на спектр, установившийся в ЗБО, слабо влияет окружение других зон, содержащих разные составы.

5 Исследование эффективности трансмутации Am-241 в быстротепловой системе на основе реактора типа БH-600

На рисунках 21 — 27 приведены энергетические зависимости сечений захвата и деления для ряда нуклидов, влияющих на процесс трансмутации Am-241.

Рис. 21. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Am-242m от энергии

Рис. 22. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Am-242 от энергии

Рис. 23. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Am-243 от энергии

Рис. 24. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Cm-242 от энергии

Рис. 25. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Cm-243 от энергии

Рис.26. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Cm-244 от энергии

Рис. 27. Зависимость сечения деления (σ_f) и сечения захвата (σ_c) Cm-245 от энергии

Проведем анализ зависимостей сечений захвата и деления от энергии для нуклидов, образующихся при облучении Am-241, приведённых на рисунках 21 — 27 в соответствии со схемой нуклидных переходов. Результаты анализа показывают:

- сечение деления быстрыми нейтронами Am-241 существенно выше сечений захвата. Для других энергий сечения захвата выше сечений деления;

– подобная ситуация и для нуклидов Am-243, Cm-242 и Cm-244;

– для нуклидов Am-242m, Am-242, Cm-243 и Cm-245 сечение деления выше сечения захвата во всей области энергий и растут с уменьшением энергии.

В работе [22] показано, что локальная эффективность выжигания Am-241 в тепловом спектре выше, чем в быстром. Из результатов этой работы видно, что в тепловой области наблюдается образование большого количества тяжелых ядер — продуктов захвата на Am-241 и дочерних нуклидах. Это сопровождается делением ряда образующихся нуклидов, что обуславливает существенный выход продуктов деления в этой области. Это объясняется тем, что Am-241, после поглощения нейтрона, переходит в Am-242m с большим сечением деления в тепловом спектре нейтронов. Ряд других образующихся нуклидов: Am-242, Am-244, Cm-241, Cm-243, Cm-245, Cm-247 — также имеют достаточно высокие сечения деления в тепловой области. Таким образом, при трансмутации Am-241 в тепловой области не наблюдается значительного (по массе) накопления других MA. Высокая эффективность трансмутации Am-241 в тепловой области не говорит о непременной предпочтительности использования тепловых реакторов для утилизации MA. Потому что в данном случае перевод америция в продукты деления происходит не напрямую (как в быстром спектре), а путем трансмутации Am-241 в делящиеся нуклиды, что требует наличия большого количества избыточных нейтронов в системе, которых в тепловых реакторах крайне мало.

В данной работе приведены результаты исследования эффективности трансмутации Am-241 в быстротепловых системах. В таком подходе проблема дефицита избыточных нейтронов решается с помощью зон с «быстрым» спектром. Исследуемая конструкция такой системы приведена на рисунке 28.

Рис. 28. Модель быстро-тепловой системы на основе реактора типа БН-600

Стандартная активная зона реактора БН-600 состоит из зон малого обогащения (ЗМО), зоны среднего обогащения (ЗСО) и зоны большого обогащения (ЗБО). ЗМО, ЗСО и ЗБО состоят из высокообогащенной двуокиси урана с обогащением соответственно 17%, 21% и 26%. Бланкеты тоже состоят из двуокиси урана, но с обогащением 3%.

В данном реакторе моделировалось выжигание минорных актинидов в быстро-тепловой системе. В ЗМО и ЗСО использовалось топливо в виде UO₂. Сборки с минорными актинидами использовались только в ЗБО. Для моделирования смягчения спектра в такой системе часть сборок с Am-241 окружалась бериллием. В ЗБО и в ТВС, окруженных бериллием, загружались изотопы нептуния, америция и кюрия в металлическом виде. Состав металлического топлива приведен в таблице 5. ЗМО содержало 174 ТВС, ЗСО — 60 ТВС с двуокисью урана. ЗБО содержало 156 ТВС. Из них с минорными актинидами TBC, окруженных бериллием, — 12, TBC с Be — 72. Проводились две серии расчётов. В первой серии рассчитывалась система с минорными актинидами, окружённых бериллием. Вторая серия проводилась для системы, в которой сборки с бериллием заменялись стандартными сборками ЗБО с UO₂. Ниже в таблицах 6 – 9 приведены изменения составов реактора в зависимости от времени облучения 30H И сценария моделирования.

Изотоп	Ядерная концентрация, ×10 ²⁴ ядер/см ³	Изотоп	Ядерная концентрация, ×10 ²⁴ ядер/см ³
Np-237	0,025704	Cm-243	1,4587E-05
Am-241	0,010786	Cm-244	1,22938E-03
Am-242m	3,501E-05	Cm-245	8,694E-05
Am-243	0,00501	Cm-246	1,576444E-05
Cm-242	1,39E-10	Cm-247	3,324163E-07

Таблица 5. Состав металлического топлива

	U		TDO NIO
	\mathbf{D}	πηριιοροό κανπαιμμι Β	
- I AV. I VI II A. V. KI	эмспение коннентрании в	ппопосос кампании в	
		mp o que e nominante e	1200110

Изотоп	Дни									
	0	730	1460	2190	2920	3650	4380			
U235	3,23E-03	2,80E-03	2,15E-03	1,67E-03	1,31E-03	1,03E-03	7,97E-04			
U238	1,58E-02	1,55E-02	1,49E-02	1,45E-02	1,40E-02	1,36E-02	1,31E-02			
U232	0,00E+00	2,43E-13	1,47E-12	3,10E-12	4,59E-12	5,97E-12	7,21E-12			
U233	0,00E+00	2,57E-10	3,96E-10	5,58E-10	5,39E-10	5,42E-10	5,10E-10			
Th232	0,00E+00	1,44E-12	1,12E-11	2,77E-11	4,87E-11	7,29E-11	9,93E-11			
Np237	0,00E+00	2,27E-06	1,06E-05	2,12E-05	3,29E-05	4,48E-05	5,63E-05			
Np238	0,00E+00	1,65E-09	7,22E-09	1,41E-08	2,20E-08	3,06E-08	3,94E-08			

Продолжение табл. 6	5
---------------------	---

Изатан	Дни							
1301011	0	730	1460	2190	2920	3650	4380	
Pu238	0,00E+00	8,59E-08	1,03E-06	3,19E-06	6,62E-06	1,13E-05	1,71E-05	
Pu239	0,00E+00	2,36E-04	5,91E-04	8,46E-04	1,04E-03	1,18E-03	1,30E-03	
Pu240	0,00E+00	3,67E-06	2,57E-05	6,00E-05	1,03E-04	1,51E-04	2,04E-04	
Pu241	0,00E+00	3,64E-08	6,53E-07	2,29E-06	5,03E-06	8,87E-06	1,38E-05	
Pu242	0,00E+00	2,66E-10	1,39E-08	8,01E-08	2,49E-07	5,75E-07	1,12E-06	
Am241	0,00E+00	4,59E-10	2,46E-08	1,43E-07	4,30E-07	9,51E-07	1,75E-06	
Am242	0,00E+00	1,13E-13	5,65E-12	3,16E-11	9,60E-11	2,17E-10	4,09E-10	
Am242m	0,00E+00	7,78E-13	1,14E-10	1,03E-09	4,17E-09	1,15E-08	2,53E-08	
Am243	0,00E+00	1,52E-12	2,29E-10	2,13E-09	8,93E-09	2,64E-08	6,23E-08	
Am244	0,00E+00	1,43E-17	2,02E-15	1,81E-14	7,64E-14	2,31E-13	5,57E-13	
Am244m	0,00E+00	9,28E-18	1,30E-15	1,17E-14	4,92E-14	1,48E-13	3,58E-13	
Cm242	0,00E+00	5,82E-12	6,07E-10	4,25E-09	1,43E-08	3,43E-08	6,76E-08	
Cm243	0,00E+00	2,74E-14	8,27E-12	9,25E-11	4,23E-10	1,27E-09	3,00E-09	
Cm244	0,00E+00	2,42E-14	1,03E-11	1,53E-10	8,75E-10	3,26E-09	9,36E-09	
Cm245	0,00E+00	1,72E-16	2,01E-13	4,75E-12	3,69E-11	1,71E-10	5,87E-10	
Cm246	0,00E+00	6,79E-19	2,26E-15	8,73E-14	9,44E-13	5,63E-12	2,38E-11	
Cm247	0,00E+00	2,29E-21	2,14E-17	1,32E-15	1,95E-14	1,47E-13	7,56E-13	

Таблица 7. Изменение концентраций в процессе кампании в ТВС ЗСО

Изотон		Дни							
1301011	0	730	1460	2190	2920	3650	4380		
U235	3,99E-03	3,43E-03	2,54E-03	1,87E-03	1,37E-03	9,89E-04	7,06E-04		
U238	1,50E-02	1,47E-02	1,41E-02	1,36E-02	1,30E-02	1,25E-02	1,19E-02		
U232	0,00E+00	3,68E-13	1,96E-12	3,92E-12	6,10E-12	8,68E-12	1,14E-11		
U233	0,00E+00	3,29E-10	8,76E-10	1,04E-09	1,11E-09	1,16E-09	1,04E-09		
Th232	0,00E+00	1,67E-12	1,35E-11	3,36E-11	5,93E-11	8,88E-11	1,20E-10		
Np237	0,00E+00	3,45E-06	1,51E-05	3,00E-05	4,63E-05	6,21E-05	7,66E-05		
Np238	0,00E+00	2,51E-09	1,12E-08	2,32E-08	3,74E-08	5,32E-08	6,84E-08		
Pu238	0,00E+00	1,29E-07	1,56E-06	4,92E-06	1,03E-05	1,77E-05	2,66E-05		
Pu239	0,00E+00	2,16E-04	5,58E-04	8,04E-04	9,81E-04	1,11E-03	1,19E-03		
Pu240	0,00E+00	3,13E-06	2,35E-05	5,76E-05	1,01E-04	1,51E-04	2,04E-04		
Pu241	0,00E+00	4,17E-08	7,88E-07	2,79E-06	6,12E-06	1,09E-05	1,69E-05		
Pu242	0,00E+00	3,10E-10	1,85E-08	1,13E-07	3,60E-07	8,50E-07	1,67E-06		
Am241	0,00E+00	5,20E-10	2,95E-08	1,70E-07	5,03E-07	1,09E-06	1,99E-06		
Am242	0,00E+00	1,31E-13	7,61E-12	4,52E-11	1,39E-10	3,19E-10	6,05E-10		
Am242m	0,00E+00	9,07E-13	1,48E-10	1,39E-09	5,64E-09	1,55E-08	3,35E-08		
Am243	0,00E+00	2,06E-12	3,68E-10	3,98E-09	1,75E-08	5,38E-08	1,33E-07		

Продолжение табл. 7

Изотоп				Дни			
	0	730	1460	2190	2920	3650	4380
Am244	0,00E+00	2,02E-17	3,68E-15	4,10E-14	1,87E-13	6,09E-13	1,56E-12
Am244m	0,00E+00	1,31E-17	2,37E-15	2,64E-14	1,20E-13	3,92E-13	1,00E-12
Cm242	0,00E+00	6,77E-12	8,08E-10	5,98E-09	2,05E-08	5,01E-08	9,85E-08
Cm243	0,00E+00	3,04E-14	1,09E-11	1,35E-10	6,47E-10	2,02E-09	4,78E-09
Cm244	0,00E+00	3,39E-14	1,78E-11	3,18E-10	2,02E-09	8,08E-09	2,41E-08
Cm245	0,00E+00	2,51E-16	3,80E-13	1,09E-11	9,78E-11	4,96E-10	1,79E-09
Cm246	0,00E+00	9,95E-19	4,45E-15	2,19E-13	2,83E-12	1,92E-11	8,72E-11
Cm247	0,00E+00	3,29E-21	4,22E-17	3,48E-15	6,33E-14	5,58E-13	3,12E-12

Таблица 8. Изменение концентраций в процессе кампании в ТВС ЗБО

Изотон	Дни								
1301011	0	730	1460	2190	2920	3650	4380		
U235	0,00E+00	3,28E-08	8,63E-07	3,64E-06	8,91E-06	1,66E-05	2,61E-05		
U238	0,00E+00	8,87E-11	7,37E-10	1,87E-09	3,32E-09	4,98E-09	6,75E-09		
U232	0,00E+00	2,97E-11	6,40E-10	2,11E-09	4,06E-09	5,84E-09	7,20E-09		
U233	0,00E+00	6,73E-09	1,91E-08	3,12E-08	4,41E-08	5,76E-08	7,01E-08		
Th232	0,00E+00	2,80E-17	8,99E-16	5,99E-15	2,37E-14	6,96E-14	1,67E-13		
Np237	2,57E-02	2,35E-02	1,95E-02	1,60E-02	1,30E-02	1,05E-02	8,41E-03		
Np238	0,00E+00	1,00E-05	8,95E-06	8,01E-06	6,97E-06	6,06E-06	5,17E-06		
Pu238	0,00E+00	1,37E-03	3,83E-03	5,45E-03	6,38E-03	6,78E-03	6,79E-03		
Pu239	0,00E+00	1,27E-05	1,03E-04	2,49E-04	4,15E-04	5,76E-04	7,15E-04		
Pu240	0,00E+00	4,82E-05	1,46E-04	2,43E-04	3,35E-04	4,21E-04	4,99E-04		
Pu241	0,00E+00	5,11E-07	3,91E-06	9,84E-06	1,75E-05	2,65E-05	3,62E-05		
Pu242	0,00E+00	9,51E-05	2,55E-04	3,76E-04	4,63E-04	5,21E-04	5,56E-04		
Am241	1,08E-02	9,75E-03	7,89E-03	6,32E-03	5,02E-03	3,95E-03	3,09E-03		
Am242	0,00E+00	1,50E-06	1,30E-06	1,13E-06	9,58E-07	8,10E-07	6,69E-07		
Am242m	3,50E-05	7,62E-05	1,30E-04	1,55E-04	1,59E-04	1,51E-04	1,36E-04		
Am243	5,01E-03	4,62E-03	3,89E-03	3,27E-03	2,72E-03	2,26E-03	1,87E-03		
Am244	0,00E+00	2,62E-08	2,37E-08	2,17E-08	1,93E-08	1,72E-08	1,51E-08		
Am244m	0,00E+00	1,69E-08	1,53E-08	1,39E-08	1,24E-08	1,11E-08	9,73E-09		
Cm242	1,39E-10	2,38E-04	2,61E-04	2,29E-04	1,96E-04	1,65E-04	1,37E-04		
Cm243	1,46E-05	1,39E-05	1,57E-05	1,66E-05	1,65E-05	1,58E-05	1,47E-05		
Cm244	1,23E-03	1,33E-03	1,48E-03	1,54E-03	1,55E-03	1,51E-03	1,44E-03		
Cm245	8,69E-05	1,08E-04	1,52E-04	1,92E-04	2,26E-04	2,52E-04	2,69E-04		
Cm246	1,58E-05	1,67E-05	1,99E-05	2,48E-05	3,12E-05	3,88E-05	4,73E-05		
Cm247	3,32E-07	5,47E-07	9,80E-07	1,46E-06	2,05E-06	2,78E-06	3,68E-06		

Изатат	Дни								
11301011	0	730	1460	2190	2920	3650	4380		
U235	0,00E+00	8,95E-08	2,51E-06	1,05E-05	2,53E-05	4,59E-05	6,90E-05		
U238	0,00E+00	1,26E-10	1,04E-09	2,62E-09	4,66E-09	7,08E-09	1,01E-08		
U232	0,00E+00	5,59E-12	6,31E-10	1,87E-09	3,68E-09	5,90E-09	7,01E-09		
U233	0,00E+00	6,67E-09	1,85E-08	2,96E-08	4,22E-08	5,64E-08	6,72E-08		
Th232	0,00E+00	3,02E-17	1,78E-15	1,79E-14	8,71E-14	2,86E-13	7,28E-13		
Np237	2,57E-02	2,33E-02	1,88E-02	1,47E-02	1,12E-02	8,26E-03	5,94E-03		
Np238	0,00E+00	1,52E-05	1,39E-05	1,23E-05	1,05E-05	8,71E-06	6,87E-06		
Pu238	0,00E+00	2,06E-03	5,83E-03	8,33E-03	9,61E-03	9,90E-03	9,47E-03		
Pu239	0,00E+00	2,91E-05	2,37E-04	5,75E-04	9,46E-04	1,28E-03	1,53E-03		
Pu240	0,00E+00	5,03E-05	1,68E-04	3,06E-04	4,58E-04	6,17E-04	7,74E-04		
Pu241	0,00E+00	1,45E-06	1,09E-05	2,74E-05	4,95E-05	7,61E-05	1,06E-04		
Pu242	0,00E+00	1,35E-04	3,65E-04	5,36E-04	6,50E-04	7,11E-04	7,30E-04		
Am241	1,08E-02	9,65E-03	7,55E-03	5,72E-03	4,20E-03	3,00E-03	2,08E-03		
Am242	0,00E+00	2,14E-06	1,89E-06	1,62E-06	1,32E-06	1,06E-06	8,00E-07		
Am242m	3,50E-05	9,49E-05	1,70E-04	1,98E-04	1,92E-04	1,67E-04	1,34E-04		
Am243	5,01E-03	4,55E-03	3,70E-03	2,94E-03	2,30E-03	1,76E-03	1,34E-03		
Am244	0,00E+00	3,96E-08	3,62E-08	3,26E-08	2,82E-08	2,44E-08	2,04E-08		
Am244m	0,00E+00	2,54E-08	2,33E-08	2,09E-08	1,82E-08	1,57E-08	1,31E-08		
Cm242	1,39E-10	3,41E-04	3,80E-04	3,30E-04	2,73E-04	2,19E-04	1,67E-04		
Cm243	1,46E-05	1,70E-05	2,81E-05	3,43E-05	3,58E-05	3,37E-05	2,96E-05		
Cm244	1,23E-03	1,47E-03	1,82E-03	2,00E-03	2,05E-03	1,99E-03	1,85E-03		
Cm245	8,69E-05	1,24E-04	2,10E-04	2,96E-04	3,67E-04	4,17E-04	4,41E-04		
Cm246	1,58E-05	1,77E-05	2,48E-05	3,72E-05	5,45E-05	7,59E-05	9,90E-05		
Cm247	3,32E-07	7,13E-07	1,64E-06	2,95E-06	4,89E-06	7,64E-06	1,12E-05		

Таблица 9. Изменение концентраций в процессе кампании в TBC, окруженных бериллием

Таблица 10. Сравнение концентраций Am в процессе кампании в ТВС

11	Дни							
VI30T0II	0	730	1460	2190	2920	3650	4380	
	Без бериллия							
Am241	1,08E-02	9,75E-03	7,89E-03	6,32E-03	5,02E-03	3,95E-03	3,09E-03	
Am242	0,00E+00	1,50E-06	1,30E-06	1,13E-06	9,58E-07	8,10E-07	6,69E-07	
Am242m	3,50E-05	7,62E-05	1,30E-04	1,55E-04	1,59E-04	1,51E-04	1,36E-04	
Am243	5,01E-03	4,62E-03	3,89E-03	3,27E-03	2,72E-03	2,26E-03	1,87E-03	
Am244	0,00E+00	2,62E-08	2,37E-08	2,17E-08	1,93E-08	1,72E-08	1,51E-08	
Am244m	0,00E+00	1,69E-08	1,53E-08	1,39E-08	1,24E-08	1,11E-08	9,73E-09	

Изатан				Дни				
1301011	0	730	1460	2190	2920	3650	4380	
	С бериллием							
Am241	1,08E-02	9,65E-03	7,55E-03	5,72E-03	4,20E-03	3,00E-03	2,08E-03	
Am242	0,00E+00	2,14E-06	1,89E-06	1,62E-06	1,32E-06	1,06E-06	8,00E-07	
Am242m	3,50E-05	9,49E-05	1,70E-04	1,98E-04	1,92E-04	1,67E-04	1,34E-04	
Am243	5,01E-03	4,55E-03	3,70E-03	2,94E-03	2,30E-03	1,76E-03	1,34E-03	
Am244	0,00E+00	3,96E-08	3,62E-08	3,26E-08	2,82E-08	2,44E-08	2,04E-08	
Am244m	0,00E+00	2,54E-08	2,33E-08	2,09E-08	1,82E-08	1,57E-08	1,31E-08	

Продолжение табл. 10

Сравнение темпов выгорания Am-241 в сборках, окружённых бериллием и без бериллия, представлено на рисунке 29. Сравнение темпов выгорания Np-237 в сборках, окружённых бериллием и без бериллия, представлена на рисунке 30. На рисунке 31 представлено сравнение темпов накопления Pu-238 в сборках, окружённых бериллием и без бериллия.

Из результатов, приведённых на рисунке 29 видно, что Am-241, окружённый бериллием, выгорает лучше, чем без бериллия.

Сравнение темпов выгорания Ат-241

Рис. 29. Сравнение темпов выгорания Am-241 в сборках, окружённых бериллием и без бериллия

Изменение концентрации Np-237 в реакторе типа БН-600

Рис. 30. Сравнение темпов выгорания Np-237 в сборках, окружённых бериллием и без бериллия

Накопление Ри-238 в реакторе типа БН-600

Рис. 31. Сравнение темпов накопления Pu-238 в сборках, окружённых бериллием и без бериллия

ЗАКЛЮЧЕНИЕ

Проведены теоретические исследования спектральных и гетерогенных эффектов для повышения эффективности выжигания минорных актинидах в реакторе на быстрых нейтронах типа БН-600. В рамках исследований рассматривались следующие задачи:

1. Исследование композиций активных зон быстрых реакторов с топливом $U^{238} + Am^{241}$ и $Th^{232} + Am^{241}$ для выжигания и трансмутации Am-241.

2. Сравнение спектральных характеристик разных вариантов выжигания Am-241 в реакторе типа БH-600.

3. Исследования эффектов гетерогенности при трансмутации Am-241 в реакторе на быстрых нейтронах с уран-ториевым топливо.

4. Расчётное моделирование выжигания минорных актинидов при разных способах их размещения в реакторе типа БН-600.

5. Исследование эффективности трансмутации Am-241 в быстротепловой системе на основе реактора типа БH-600.

В рамках первой задачи рассматривалось два варианта её решения. В первом варианте урановое оксидное топливо заменялось смесью Am-241 с U-238, а во втором — смесью Am-241 с Th-232. Оба варианта показали высокую «устойчивость» запаса реактивности на длительный временном интервале. Исследования показали, что подмешивание урана или тория увеличивает темп выгорания Am-241 по сравнению с полной загрузкой Am-241 ЗБО реактора типа БH-600. Более существенное влияние на темп выжигания Am-241 проявляется в топливной композиции америция с Th-232. Что объясняется более низкой возможностью Th-232 перейти в Am-241 в результате нуклидных превращений по сравнению с U-238. Накопление Pu-238 в зависимости от времени облучения для обоих вариантов показывает близкие результаты.

Во второй задаче были проведены исследования спектральных характеристик для одиннадцати вариантов размещения Am-241 в активной зоне реактора на быстрых нейтронах типа БH-600 и их влияния на эффективность выжигания Am-241. Наиболее важный результат связан со сравнением спектров систем зоны ЗМО, содержащих семь TBC с америцием и полностью загруженных Am-241. Из результатов следует, что при семи TBC с Am-241 и полной загрузке Am-241 разница в спектрах невелика. Это важный результат. В быстром реакторе типа БH-600, содержащем семь сборок с америцием и полностью загруженным и полностью загруженным и полностью загруженным и полностью загрузке Am-241 разница в спектрах невелика. Это важный результат. В быстром реакторе типа БH-600, содержащем семь сборок с америцием и полностью загруженным Am-241, скорость превращения Am-241 в осколки будет практически одинаковой!

Третья задача посвящена исследованию влияния гетерогенного размещения Am-241 на скорость его выжигания по сравнению с гомогенным вариантом. Эти исследования проводились с использованием уран-ториевого топливного цикла в модели реактора малой мощности на быстрых нейтронах. Показано, что выжигание америция имеет более высокий темп для зоны с гетерогенным размещением америция по сравнению с гомогенной зоной. Таким образом, гетерогенное размещение Am-241 позволяет улучшить процесс его выжигания.

В четвёртой задаче исследовалось влияние на темп выжигания набора минорных актинидов в зависимости от состава зон, их окружающих. Рассматривались два варианта зависимости изменения ядерных плотностей нуклидов от времени, вносящих наибольший вклад в состав МА в ЗБО, при условии, что в первом случае МА в металлической форме находятся только в ЗБО, в других зонах — UOX, а во втором варианте МА во всех зонах. Результаты показывают очень близкие значения для обоих вариантов, что, по-видимому, связано с тем, что для обоих случаев на спектр, установившийся в ЗБО, слабо влияет окружение других зон, содержащих разные составы.

Пятая задача посвящена исследованиям эффективности выжигания МА в быстротепловой системе. Данная система моделировалась с использованием реактора на быстрых нейтронах типа БН-600. В таком подходе проблема дефицита избыточных нейтронов решается с помощью зон с «быстрым» спектром. Для смягчения спектра в такой системе часть топливных сборок с Am-241 окружаются бериллием. Сравнение темпов выгорания Am-241 в сборках, окружённых бериллием и без бериллия, показало, что Am-241, окружённый бериллием, выгорает лучше, чем без бериллия.

35

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Bergelson B., Gerasimov A., Zaritskaya T., Kiselev G., Volovik A. DECAY HEAT POWER AND RADIOTOXICITY OF SPENT URANIUM, PLUTONIUM AND THORIUM FUEL AT LONG-TERM STORAGE. Beijing: SMiRT18, 2005, 18th International Conference on Structural Mechanics in Reactor Technology.
- 2. Salvatores M., Slessarev I., Uematsu M. A Global Physics Approach to Transmutation of Radioactive Nuclei // Nuclear Science and Engineering. 1994, vol. 116, pp. 1–18.
- 3. Japan Atomic Energy Agency Nuclear Data Center. Japanese standard library for fast breeder reactors, thermal reactors, fusion neutronics and shielding calculations, and other applications (JENDL-4.0). JAEA-NDC, 2010. URL: https://www.ndc.jaea.go.jp/jendl/j40/j40.html. (дата обращения 12.09.2022)
- 4. OECD NEA. French R&D on the Partitioning and Transmutation of Longlived Radionuclides: An International Peer Review of the 2005 CEA Report. Papers: OECD Publishing, 2006.
- 5. Oak Ridge National Laboratory. Preliminary Multicycle Transuranic Actinide Partitioning-Transmutation Studies. 2007. ORNL/TM-2007/24.
- 6. *Naoyuki Takaki*. Neutronic potential of water cooled reactor with actinide closed fuel cycle // Progress in Nuclear Energy, 2000, vol. 37, pp. 1–4.
- 7. *Kloosterman, J.L.* Multiple Recycling of Plutonium in Advanced PWRs // Netherlands Energy Research Foundation (ECN), 1998.
- Gilles Youinou. Plutonium Multirecycling in Standard PWRs Loaded with Evolutionary Fuels // Nuclear Science and Engineering: the journal of the American Nuclear Society. — 2005 — V. 151.
- Atomic Energy of Canada Limited (AECL). Scenarios for the Transmutation of Actinides in CANDU Reactors : Company WIDE. Ontario: AECL, 2010. CW-123700-CONF-010.
- 10. *Kostadin Zashev*. Transmutation of VVER-1000 Spent Nuclear Fuel in Candu Reactors / София: ЕНЕРГИЕН ФОРУМ 2017.
- 11. Prunier C, Boussard F, Koch L, Coquerelle M. Some Specific Aspects of Homogeneous Americium- and Neptunium- Based Fuels Transmutation through the Outcomes of the SUPERFACT Experiment in Phenix Fast Reactor // Nuclear Technology, 119, 1997, p. 141—147. JRC15648.
- 12. Guillaumont, R. The Bataille's law: scientific research for nuclear wastes in France. L'Actualité chimique, 2005.
- Jean-Marc Bonnerot, et al. First Results of the Irradiation Program of Inert Matrices, Targets and Fuels for Minor Actinides Transmutation in Fast Reactor. — Montpellier, 2008.

- 14. *Chichester J. M.* et al. Overview of the FUTURIX-FTA Irradiation Experiment in the Phénix Reactor. Heather. Paris: Global 2015, 2015. P 5268/
- 15. Idaho National Laboratory. Postirradiation Examination of FUTURIX-FTA metallic alloy experiments. Idaho: INL, 2019. INL/JOU-18-52239-Revision-0.
- 16. The EBR-II X501 Minor Actinide Burning Experiment. Idaho: INL, 2008. INL/CON-08-13828 PREPRINT.
- 17. *Tomonori Soga, Takashi Sekine, Kosuke Tanaka, Ryoichi Kitamura, Takafumi Aoyama*. Irradiation Test of Fuel Containing Minor Actinides in the Experimental Fast Reactor Joyo. Journal of Power and Energy Systems, 2008. ISSN: 1881-3062.
- 18. INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA). Status of Minor Actinide Fuel Development. VIENNA: IAEA, 2009. No. NF-T-4.6.
- 19. Погляд С.С. Реализация проекта ЕОТП и опыт фабрикации топлива с минорными актинидами : Доклад / Отраслевой семинар «Технологии фракционирования и трансмутации минорных актинидов. Достижения и перспективы развития», Москва, 2019.
- 20. International Atomic Energy Agency (IAEA). Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel. Vienna: IAEA, 2009. IAEA-TECDOC-1626.
- 21. Гулевич А.В., Елисеев В.А., Клинов Д.А., Коробейникова Л.В., Крячко М.В., Першуков В.А., Троянов В.М. Возможность выжигания америция в быстрых реакторах // Атомная энергия. 2020. Т.128. С.82—87.
- 22. Косякин Д.А., Коробейников В.В., Стогов В.Ю. Исследование зависимости эффективности трансмутации Ат-241 от энергетической структуры плотности нейтронного потока : Препринт ФЭИ 3294 / Обнинск, АО «ГНЦ РФ-ФЭИ», 2021. 32 с.
- 23. Коробейников В.В., Колесов Игнатьев И.А. *B*.*B*., Расчётное моделирование выжигания минорных актинидов в реакторе на быстрых Препринт нейтронах c топливом без урана И плутония ФЭИ – 3299 / Обнинск, АО «ГНЦ РФ-ФЭИ», 2022. — 38 с.
- 24. Коробейников В.В., Колесов В.В., Каражелевская Ю.Е., Терехова А.М. Исследование возможности выжигания минорных актинидов в быстром реакторе с металлическим топливом на основе только минорных актинидов // Вопросы атомной науки и техники. Серия Ядерные константы. 2020. Вып.1. С. 59—68.
- 25. Мосеев А.Л., Декусар В.М., Коробейников В.В., Елисеев В.А. Исследования потенциала двухкомпонентной системы ЯЭ в разных условиях её развития // Вопросы атомной науки и техники. Серия Ядерные константы. 2019. Вып.2. С.189—205.

- 26. Коробейников В.В., Колесов В.В., Каражелевская Ю.Е., Терехова А.М. Исследования возможности выжигания и трансмутации Ат-241 в реакторе с америциевым топливом // Известия вузов. Ядерная энергетика. — 2019. — Вып. 2. — С. 153—163.
- 27. Декусар В.М., Зродников А.В., Елисеев В.А., Мосеев А.Л. К вопросу накопления и реакторной утилизации америция в ядерной энергетике // Вопросы атомной науки и техники. Серия Ядерные константы. 2019. Вып.1. С. 215—222.
- 28. BN-600 MOX core benchmark analysis results from phases 4 and 6 of a coordinated research project on updated codes and methods to reduce the calculational uncertainties of the lmfr reactivity effects. IAEA-TECDOC-1700. International atomic energy agency Vienna, 2013.
- 29. Alekseev P., Vasiliev A., Mikityuk K., Subbotin S., Fomichenko P., Schepetin T. "Lead-bismuth reactor RBEC: optimization of conceptual decisions". Preprint IAE-6229/4. — 2001.

Подписано к печати 15.12.2022. Формат 60×84 ¹/₁₆. Усл. п. л. 1,2. Уч.-изд. л. 1,8. Тираж 45 экз. Заказ № 266.

Отпечатано в ОПиНТИ методом прямого репродуцирования с оригинала авторов. 249033, Обнинск Калужской обл., пл. Бондаренко, 1.

АО «ГНЦ РФ – Физико-энергетический институт имени А.И. Лейпунского»