

РАСЧЕТНОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКОГО ПУСКА БЫСТРОГО РЕАКТОРА СО СВИНЦОВЫМ ТЕПЛОНОСИТЕЛЕМ

«Нейтронно-физические проблемы атомной энергетики», г. Обнинск

Докладчик

Солдатов Евгений Олегович

Начальник группы

Авторы: Солдатов Е.О., Жирнов А.П., Моисеев А.В., Ламанов С.А., Войтехова В.В., Давыдов В.К., Хахулин В.И.

28.05.2024 - 31.05.2024

Актуальность работы

В настоящее время реализуется проект по созданию быстрого реактора со свинцовым теплоносителем БРЕСТ-ОД-300. Для осуществления крупномасштабного развития ядерной энергетики, отвечающей современным требованиям к реакторам нового поколения, проектируется конкурентоспособный коммерческий энергоблок БР-1200 электрической мощностью 1200 МВт.

Физический пуск реактора включает загрузку ТВС, формирование стартовой загрузки, работы по выводу реактора в критическое состояние и проведение измерений нейтронно-физических характеристик реактора.

В данной работе рассмотрены подходы по расчетному моделированию набора критической массы реактора БР-1200 и особенности измерения нейтронно-физических характеристик различными методами. Рассмотрен один из вариантов а.з. БР-1200, разработанный на этапе эскизного проектирования.

Расчетное моделирование проведено с использованием системы проектных кодов.

Структура системы кодов

Описание ПК MCU-BR

- Разработан в НИЦ «Курчатовский институт»
- Расчет НФХ методом Монте-Карло с учетом изменения нуклидного состава топлива в процессе кампании;
- Расчетная модель с высокой точностью описывает геометрию реактора;
- Расчеты критических и подкритических состояний реактора выполняются с использованием условнокритической модели.
- Для расчета распределения плотности потока нейтронов в подкритических состояниях используется модель подкритического реактора с внешним источником нейтронов.
- Константное обеспечение представляет собой банк данных MDBBR50;
- Библиотека MDBBR50 включает: JENDL – 4.0, ENDF/B-VII.1, РОСФОНД-2010.

Описание ПК FACT-BR

- Разработан специалистами АО «НИКИЭТ» и активно развивается;
- 26-групповое диффузионное приближение;
- Система подготовки нейтронных сечений CONSYST с библиотекой БНАБ-93;
- Нейтронно-физический расчет реактора в стационарном состоянии на физических уровнях мощности;
- Нейтронно-физический расчет подкритического реактора с локальными и распределенными внешними источниками нейтронов.
- Нейтронно-физический расчет пространственной кинетики реактора с опцией реактиметра.

Расположение датчиков регистрации нейтронного потока

Расположение детекторов дополнительной системы контроля ФП

Рассматривается возможность размещения дополнительных детекторов ближе к активной зоне реактора

Расчетные модели в ПК FACT-BR и MCU-BR

Расчетная модель в ПК FACT-BR

Расчетная модель в ПК MCU-BR

Зона регистрации ППН в штатных детекторах располагается на уровне центра топливной части а.з. 7

Распределение ППН в местах расположения штатных детекторов

Интенсивность ПИН 10⁹ н/с

Детектор	Плотность потока нейтронов, н/(см2·с)						
	8200 мм	9560 мм					
1-КСУЗ	1.19E-02	1.30E-03					
2-ДСЗ	1.10E-02	1.34E-03					
3-КСУЗ	9.63E-03	1.10E-03					
4-РПУ	1.00E-02	1.37E-03					
5-РПУ	8.78E-03	1.26E-03					
6-КСУЗ	1.08E-02	1.35E-03					
7-ДСЗ	1.17E-02	1.41E-03					
8-КСУЗ	1.18E-02	1.43E-03					

Выводы:

- Плотность потока нейтронов в местах расположения штатных детекторов составляет менее 1 н/(см²·с).
- Для подконтрольного набора критической массы необходимо использовать дополнительную систему контроля ФП

Расчет проведен по ПК MCU-BR. Время расчета составляет: 14 дней. Стат. погрешность ~ 10 %.

Распределение ППН в местах расположения дополнительной системы контроля

Интенсивность ПИН 109 н/с

Слой (снизу вверх)		ППН, н/(см2·с)											
	Цент	ра.з.	17.8 см с	от центра	58.9 см с	от центра	195.8 см от центра						
	MCU-BR	FACT-BR	MCU-BR	FACT-BR	MCU-BR	FACT-BR	MCU-BR	FACT-BR					
1	15007	15939	14600	15394	9890	11131	288	396					
2	10617	12694	10281	12248	7080	9089	229	380					
3	8063	10207	7785	9858	5471	7470	208	352					
4	6379	8189	6165	7922	4422	6111	192	319					
5	4982	6555	4813	6352	3510	4975	172	284					
6	3794	5234	3672	5080	2702	4032	146	249					
7	2899	4167	2789	4050	2085	3251	123	215					
8	2230	3306	2135	3217	1617	2608	104	183					
9	1692	2613	1630	2545	1250	2081	86	154					
10	1283	2053	1236	2002	953	1648	71	127					
11	960	1602	931	1563	721	1293	56	103					

В имитационной активной зоне основной вклад в ППН детекторов, расположенных над а.з., вносят нейтроны резонансных энергий (до 95%). Доля тепловых и быстрых нейтронов составляет порядка 5 %.

Вывод:

Использование детекторов, расположенных над топливной частью а.з., позволит проводить подконтрольный набор критической массы и может позволить снизить интенсивность ПИН.

Порядок проведения расчетов физического пуска

- Загрузка ТВС с ПИН
- Загрузка ТВС в активную зону
- В промежуточных загрузках и в момент минимальной критической загрузки проводится расчет эффективности групп РО СУЗ
- В состоянии с минимальной критической загрузкой извлекается ТВС с ПИН и размещаются ТВС с ПКР
- Программа измерений нейтронно-физических характеристик в состоянии стартовой загрузки:
 - 1. Измерение эффективности рабочих органов СУЗ, градуировочных кривых эффективности
 - 2. Измерение эффективности системы пассивной обратной связи
 - 3. Измерение температурного эффекта реактивности
 - 4. Измерение относительного распределения тепловыделения по активности ¹⁴⁰La

Порядок проведения загрузки ТВС в активную зону

Результаты набора критической массы

После 9-й партии (**265 TBC**) загрузки формируется промежуточная загрузка с К_{эф} = 0.98.

При загрузке 11 партии (340 ТВС) формируется минимальная критическая загрузка.

После загрузки 12-й партии проводится загрузка ТВС с ПКР, начиная с центральной ячейки с извлечением имитатора ТВС с ПИН.

Коэффициент умножения нейтронного потока по а.з. и по показаниям детекторов отличается, что связано с пространственными эффектами. Пространственные эффекты учитываются функцией влияния полученной расчетным образом.

Измерение эффективности органов СУЗ

В процессе набора активной зоны сцепление РО СУЗ и измерение их эффективности проводится:

- При К_{эф} ≈ 0,98 (≈ 265 ТВС)
 Метод обратного умножения
- В минимальной критической загрузке (≈ 340 ТВС) Метод ОРУК
- В стартовой загрузке (397 ТВС) -

Эффективность систем РО СУЗ (% δК/К) в состоянии с Кэф = 0,98

\rightarrow	Метод ОРУК, перекомпенсация,
	метод крайних оценок, метод парной
	интерференции, восстановление по
	градуировке, суммирование по градуировке

Эффективность систем РО СУЗ в состоянии с минимальной критической загрузкой

Система остановки (группа РО СУЗ)	MCU-BR (прямой расчет)	FACT-BR (прямой расчет)	FACT-BR (ОРУК)
Система АЗ (8 РО АЗ)	3.7	3.61	3.55
Система ЭСМ (14 РО КР)	4.69	4.69	5.17
Система ЭСМ (4 РО АР)	0.66	0.67	0.69
Система ЭСМ (14 РО КР + 4 РО АР)	4.85	4.95	5.55
Суммарная эффективность АЗ и ЭСМ	6.47	6.81	8.11

Система остановки (группа РО СУЗ)	MCU-BR			
Система АЗ (8 РО АЗ)	5.63			
Система ЭСМ (14 РО КР)	8.17			
Система ЭСМ (4 РО АР)	1.01			
Система ЭСМ (14 РО КР + 4 РО АР)	8.72			
Суммарная эффективность АЗ и ЭСМ	12.72			

Анализ пространственных эффектов

Рассматривается состояние реактора с минимальной критической загрузкой

Поромотр	Эффективность РО СУЗ по детекторам, %δК/К									
параметр	1-КСУЗ	2-ДСЗ	3-КСУЗ	4-РПУ	5-РПУ	6-КСУЗ	7-ДСЗ	8-КСУЗ		
Одиночный РО КР (26-26)	-0.37	-0.37	-0.37	-0.39	-0.39	-0.47	-0.46	-0.46		
Одиночный РО КР (27-23)	-0.29	-0.30	-0.30	-0.35	-0.35	-0.27	-0.27	-0.27		
Одиночный РО АЗ (31-26)	-0.26	-0.26	-0.26	-0.32	-0.32	-0.26	-0.26	-0.26		
Одиночный РО АЗ (24-24)	-0.44	-0.45	-0.45	-0.47	-0.47	-0.51	-0.51	-0.50		
Одиночный РО АР (28-27)	-0.15	-0.15	-0.15	-0.16	-0.16	-0.16	-0.16	-0.16		

Поромотр	Отклонение от ОРУК по а.з., % отн.										
Параметр	1-КСУЗ	2-ДСЗ	3-КСУЗ	4-РПУ	5-РПУ	6-КСУЗ	7-ДСЗ	8-КСУЗ			
Одиночный РО КР (26-26)	-8.8	-8.7	-8.4	-3.5	-3.2	16.5	15.9	15.0			
Одиночный РО КР (27-23)	2.6	4.0	4.7	23.5	22.0	-5.2	-5.6	-5.8			
Одиночный РО АЗ (31-26)	-2.7	-1.7	-1.4	21.3	21.3	-1.8	-2.5	-3.2			
Одиночный РО АЗ (24-24)	-7.7	-7.5	-7.1	-2.4	-2.2	5.7	5.1	4.7			
Одиночный РО АР (28-27)	-3.0	-3.6	-2.5	1.6	2.4	4.4	2.8	3.5			

Выводы:

- Пространственные эффекты составляют до 23.5 % для единичного СУЗ
- > По мере удаления места регистрации от места сброса стержня эффективность снижается
- > Данные эффекты необходимо учитывать при обработке результатов реактиметра

4-5 РПУ

Анализ пространственных эффектов

Пространственные эффекты заключаются в изменении соотношения между средним нейтронным потоком в активной зоне и в месте расположения детектора при перемещении стержней РО СУЗ.

никиэт

POCATOM

Выводы:

- Пространственный эффект (по среднему детектору) при измерении эффективности систем РО составляет до 16 % отн.
- При анализе экспериментальных данных необходимо вводить корректирующие коэффициенты для учета гетерогенности РО и методическую ошибку расчета ОРУК при больших эффективностях РО (более 14 βэфф).

Стартовая загрузка

Ожидаемый диапазон значений К_{эф} при достижении минимальной критической загрузки с учетом погрешности 0.7 % составляет (0,993 ÷ 1,007) и диапазон минимальной критической загрузки будет составлять от 315 до 365 ТВС.

Дальнейшие расчеты проводились для состояния с неопределенностью в 0.7 %.

Эффективность одиночных РО СУЗ в стартовой загрузке

- В состоянии стартовой загрузки в «холодном состоянии» необходимо скомпенсировать температурно-мощностной эффект реактивности и запас реактивности на выгорание топлива.
- В реакторе БР-1200 критическое состояние достигается частичным вводом на 35 см всех стержней РО КР и 55 см всех стержней РО АР.
- В стартовой загрузке измерение эффективности отдельных стержней РО КР и РО АР методом ОРУК можно выполнять при перекомпенсации стержней в близком к критическому состоянию реактора. Одиночные стержни РО КР и АР извлекаются из активной зоны, эффективность извлеченного стержня компенсируется остальными стержнями РО КР и АР.

РО СУЗ	Значение, % бК/К	Положение РО СУЗ, соответствующее критическому состоянию
Одиночный РО КР (26-26)	0.37	РО АР – 55 см, РО КР – 38 см
Одиночный РО КР (27-23)	0.34	РО АР – 55 см, РО КР – 37 см
Одиночный РО КР (21-23)	0.33	РО АР – 55 см, РО КР – 37 см
Одиночный РО КР (22-25)	0.34	РО АР – 55 см, РО КР – 37 см
Одиночный РО КР (20-24)	0.33	РО АР – 55 см, РО КР – 37 см

Метод крайних оценок (МКО)

Эффективность группы регулирующих стержней определяется из соотношения:

- Первое измерение эффективностей одиночных стержней δk_i – в состоянии первичной критичности (340 TBC)
- Производится путем поочередного погружения одиночных стержней в зону и измерения их эффективности (например, методом ОРУК)
- *k_p*-расчетная поправка, приводящая эффективность стержней, измеренных в первом состоянии, ко второму состоянию

- Второе измерение эффективностей одиночных стержней δk_i* в состоянии стартовой загрузки (397 ТВС)
- Производится путем извлечения одиночных стержней из состояния со всеми стержнями, введенными в зону

Метод парной интерференции (МПИ) и восстановления по градуировке

В методе МПИ эффективность группы регулирующих стержней определяется из соотношения:

$$\frac{\Delta k}{k} = \sum_{i=1}^{n} \delta k_i + \sum_{j=i+1}^{n} \sum_{i=1}^{n} (\delta k_i + \delta k_j)(\eta_{i,j} - 1)$$

- *δk_i* эффективности одиночных стержней СУЗ
- $\eta_{i,j}$ коэффициент парной интерференции i-го и j-го стержней, полученный из зависимости:

$$\eta_{i,j} = \frac{\delta k_{i,j}}{\delta k_i + \delta k_j}$$

• $\delta k_{i,j}$ – эффективность i-го и j-го стержней, введенных совместно.

Метод восстановления по градуировке заключается в измерении эффективности РО из критического состояния на верхнем участке хода. На нижнем участке хода осуществляется пересчет по градуировочной кривой.

В работе рассматривается способ аппроксимации эффективности по градуировке РО в состоянии с минимальной критической загрузкой.

Эффективность систем РО СУЗ в стартовой загрузке

В реакторе БР-1200 критическое состояние достигается путем частичного ввода на 35 см всех стержней РО КР и 55 см всех стержней РО АР.

Сравнение результатов расчетов разными методами

	Эффективность, % $\delta K/K$					Отклонение, %			
СУЗ	Прямой расчет	ОРУК	МКО	МПИ	Град.	ОРУК	МКО	МПИ	Град.
PO A3	3.23	3.29	-	-	-	-1.94	-	-	-
PO KP	3.88	4.16	4.12	3.52	4.09	-7.40	-6.30	9.28	-5.53
PO AP	0.57	0.58	-	-	-	-1.96	-	-	-
РО ЭСМ	4.06	4.40	-	3.56	-	-8.24	-	12.36	-
РО СУЗ	5.67	6.42	6.28	4.46	-	-13.30	-10.81	21.34	-
РО КР (внутр.)	2.52	2.55	-	2.42	-	-1.19	-	3.78	-
РО КР (внеш.)	2.14	2.20	-	1.96	-	-2.64	-	8.71	-

Градуировочная характеристика РО КР в стартовой загрузке практически совпадает с градуировкой в состоянии с мин. крит. загрузкой

Выводы:

- Группы РО АЗ, АР могут быть измерены методом ОРУК, погрешность расчетов составляет до 2 %;
- Рекомендуется РО КР и ЭСМ измерять двумя методами МКО и по градуировке, погрешность расчетов составляет до 10 %;
- Рекомендуется измерять РО СУЗ методом МКО, погрешность расчетов погрешность расчетов составляет до 10 %.

Температурный эффект реактивности и эффективность СПОС

В измерениях температурного эффекта реактивности и эффективности СПОС предлагается использовать интегральный метод. Интегральный метод измерения заключается в определении эффекта реактивности по изменению критического положения стержней СУЗ при стабилизации рассматриваемого параметра.

- Температурный эффект реактивности:
- Эффект определяется как изменение реактивности реактора при равномерном изменении температуры реактора от 390 °C до 420 °C
- В состоянии с 390 °С критическое состояние достигается путем частичного ввода на 35 см всех стержней РО КР и 55 см всех стержней РО АР.
- При реализации ТЭР при однородном нагреве реактора от 390 °С до 420 °С критическое состояние достигается извлечением РО АР на 12 см

- Эффективность СПОС:
- В реакторе БРЕСТ-ОД-300 система пассивной обратной связи (СПОС) представляет из себя каналы свинцового отражателя, из которых при снижении расхода теплоносителя свинец выдавливается газом.
- В реакторе БР-1200 используется устройство пассивной обратной связи «поплавкового» типа, которое погружается в свинцовый теплоноситель при снижении расхода.
- Эффективность СПОС компенсируется извлечением РО КР на 20 см.

Распределение энерговыделения в активной зоне

По опыту физического пуска БН-600 для анализа полей энерговыделения предлагается методика гамма-сканирования облученных ТВС Порядок эксперимента:

- Кратковременное (около 8 часов) облучение свежих ТВС в различных ячейках реактора на малом (около 0,6 % от номинального) уровне мощности
- Выдержка в течение 60 100 часов для распада короткоживущих осколков
- Измерение относительной наведенной активности ¹⁴⁰La с применением полупроводникового детектора

Тип ТВС	Мощность, отн	А (0 сут), отн	А (3 сут), отн	А (4 сут), отн
ЦЗ	1	1.000	1.000	1.000
ЦЗ	0.952	0.952	0.951	0.951
ЦЗ	0.893	0.893	0.892	0.892
ЦЗ	0.836	0.836	0.836	0.836
C3	0.966	0.967	0.967	0.967
C3	0.825	0.825	0.825	0.825
C3	0.674	0.674	0.674	0.674
ПЗ	0.817	0.675	0.675	0.675
ПЗ	0.749	0.750	0.750	0.750
ПЗ	0.518	0.519	0.519	0.519
СУЗ	0.423	0.421	0.421	0.421
СУЗ	0.380	0.378	0.378	0.378

Результаты моделирования:

Предварительный расчет активности ¹⁴⁰La в TBC а.з. БР-1200 показывает, что на этапе физического пуска экспериментальные работы с использованием методики гамма-сканирования подтвердят проектные расчеты распределения энерговыделения ²¹

Заключение

- Проведены расчеты физического пуска реактора БР-1200 с использованием проектной системы кодов.
- Проведены расчеты загрузки топлива в активную зону, смоделированы показания штатных и дополнительных детекторов. Подтверждена необходимость разработки дополнительной системы контроля физического пуска.
- Проведены расчеты эффективности органов СУЗ в различных состояниях по мере загрузки активной зоны, изучены и смоделированы методики измерений (ОРУК, метод крайних оценок, метод парной интерференции, метод восстановления по градуировке).
- Проведено моделирование температурного эффекта реактивности и эффективности СПОС.
- Проведен расчет распределения энерговыделения с использованием методики гаммасканирования.
- Представленные в работе подходы использовались при разработке программы физического пуска реактора БРЕСТ-ОД-300 и могут быть подтверждены на пуске реактора.

Спасибо за внимание

Солдатов Е.О.