

МОДЕЛИРОВАНИЕ ВЫГОРАНИЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ ВТГР В КОМПЛЕКСЕ SCALE И СРАВНЕНИЕ С РЕЗУЛЬТАТАМИ БЕНЧМАРКА

Саляев А.В., Усынина С.Г. АО "ОКБМ Африкантов"

28.05 - 31.05.2024

Топливный элемент ВТГР

Особенности моделирования

Двойная гетерогенность Сложная геометрия Специальные расчетные методики и/или программы

Верификация / Валидация

SCALE 6.2.4 - Методология расчета

Управляющий модуль TRITON – последовательности T-DEPL-1D/T6-DEPL (KENO-VI - решение транспортной задачи методом Монте-Карло) → библиотеки констант для каждого материала на каждом шаге выгорания

Спектр нейтронов в процессе выгорания рассчитывался с использованием 252-групповой библиотеки, включающей нейтронные данные, основанные на файлах оцененных ядерных данных ENDF/B-VII.1

Расчет блокировки микросечений проводился с использованием транспортного модуля CENTRM, рассчитывающего непрерывный по энергии спектр нейтронов, использующийся в качестве весовой функции (тип ячейки DOUBLEHET)

Расчет выгорания проводился по модулю изотопной кинетики ORIGEN

Конфигурация	Конфигурация Управляющий модуль/ последовательность		Количество групп
Топливная ячейка	TRITON/T-DEPL-1D (XSDRN)	scale.rev04.xn252v7.1/ ENDF/B-VII.1	252
Шаровой топливный элемент	TRITON/T6-DEPL (KENO-VI)	scale.rev04.xn252v7.1/ ENDF/B-VII.1	252
Призматический топливный блок	TRITON/ T6-DEPL (KENO VI), CSAS6 (KENO-VI)	scale.rev04.xn252v7.1/ ENDF/B-VII.1	252

Расчетные характеристики для вариантов задания микротвэл и частиц выгорающего поглотителя

Вариант задания ТК/ВП		doublehet/ частицы	частицы/ частицы	
а, ч	3,8	3,4	38,5	
Групповая структура		252	CE	
ц облучения	0,795/1,055	0,797/1,042	0,799/1,041	
Начало облучения	-0,4	-0,3	-	
Конец облучения	1,3	0,1	-	
Среднее по шагам облучения	1,4	0,1	_	
²³⁵ U	-0,16	0,17	_	
²³⁹ Pu	-2,24	0,21	-	
²⁴⁰ Pu	-0,49	-0,22	-	
²⁴¹ Pu	-1,25	0,45	-	
²⁴¹ Am	-1,57	0,39	-	
²⁴⁴ Cm	-1,46	0,81	-	
⁸⁵ Kr	0,12	-0,06	-	
⁹⁰ Sr	0,15	-0,07	- 5	
¹³⁷ Cs	0,02	0,00	-	
	/ВП а, ч уктура ц облучения Ц ачало облучения Начало облучения Конец облучения Среднее по шагам облучения 2 ³⁵ U 2 ³⁹ Pu 2 ³⁹ Pu 2 ³⁹ Pu 2 ⁴⁰ Pu 2 ⁴¹ Pu 2 ⁴¹ Pu 2 ⁴¹ Pu 2 ⁴¹ Am 2 ⁴⁴ Cm	Ивпdoublehet/ doublehetа, ч3,8уктура252уктура252ц облучения0,795/1,055Начало облучения-0,4Конец облучения1,3Среднее по шагам облучения1,4235U-0,16239Pu-2,24240Pu-0,49241Pu-1,25241Am-1,57244Cm-1,4685Kr0,1290Sr0,15137Cs0,02	And PBПdoublehet/ doublehetdoublehet/ частицыa, ч3,83,4a, ч3,83,4ykrypa2522524 облучения0,795/1,0550,797/1,042Цаало облучения-0,4-0,3Конец облучения1,30,1Среднее по шагам облучения1,40,1235U-0,160,17239Pu-2,240,21240Pu-0,49-0,22241Pu-1,250,45241Am-1,570,39244Cm-1,460,818 ⁵ Kr0,12-0,069°Sr0,15-0,07137Cs0,020,00	

Описание Бенчмарка

Микротвэл

Шаровой топливный элемент Призматический топливный блок (ТК и проходки под т/ль)

21 набор данных12 участников6 стран

10 организаций 11 расчетных программ

Рассчитывались	
следующие	
характеристики:	

• коэффициент размножения в бесконечной среде K_{inf} • спектральные индексы: 1) $\rho^{238} = {}^{238}U_c(быстр) / {}^{238}U_c(тепл);$ 2) $\delta^{235} = {}^{235}U_f(быстр) / {}^{235}U_f(тепл);$ 3) $\delta^{238} = {}^{238}U_f / {}^{235}U_f;$ 4) $c/f^{235} = {}^{238}U_c / {}^{235}U_f;$ где ${}^{238}U_c -$ скорость реакции радиационного захвата на ${}^{238}U;$ ${}^{235}U_c -$ скорость реакции радиационного захвата на ${}^{235}U;$ ${}^{235}U_f -$ скорость реакции радиационного захвата на ${}^{235}U;$ ${}^{235}U_f -$ скорость реакции деления на ${}^{235}U.$ • масса нуклидов (г/т U): 1) актиниды: ${}^{235}U, {}^{238}U, {}^{239}Pu, {}^{240}Pu, {}^{241}Pu, {}^{242}Pu, {}^{241}Am, {}^{244}Cm, {}^{245}Cm;$

2) продукты деления: ⁸⁵Kr, ⁹⁰Sr, ^{110m}Ag, ¹³⁷Cs, ¹³⁵Xe, ¹⁴⁹Sm, ¹⁵¹Sm.

Краткое наименование участника	Организация	Расчетная программа	Используемая библиотека констант/источник данных	Групповая структура	
INL-Studsvik	Idaho National Laboratory / Studsvik Scandpower	HELIOS Code Package	HELIOS Cross-Section Library based on ENDF/B-VII.0	177	
INL/PolyMtl	Idaho National Laboratory and Polytechnique Montreal	DRAGON 4.03	ENDF/B-VII	361	
FZD 1	Idaho National Laboratory / Studsvik Scandpower Idaho National Laboratory and Polytechnique Montreal Forschungszentrum Dresden-Rossendorf Istitut fuer Kernenergetik und Energiesysteme (IKE), Universitaet Stuttgart,Germany Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH Lawrence Livermore National Laboratory VTT Technical Research Centre of Finland Oak Ridge National Laboratory Los Alamos National Laboratory Korea Atomic Energy Research Institute National Autonomous University of Mexico (UNAM) - College of Engineering Idaho National Laboratory and Polytechnique Montreal	BGCore (MCNP + MG depletion)	MCNP: ZZ-MCJEFF3.1NEA	Поточечное представление сечений (CE)	
FZD 2	Forschungszentrum Dresden-Rossendorf		MCNP ACE: ZZ-MCJEFF3.1NEA	CE	
FZD 3		HELIOS 1.9	ENDF/B-VI.8	190	
IKE 1		MCNP coupled with module Abbrand		CE	
IKE 2	Institut fuer Kernenergetik und Energiesysteme (IKE) Universitaet Stuttgart Germany	Microx2.2 coupled with Origen2.2	JEFF 3.1	193	
IKE 3	(n.c.), onitolonal chargan, connary	Grain: SCALE 6, TRITON t6-depl sequence (KENO-VI) Pebble and Prismatic: SCALE 6, TRITON t5- depl sequence (KENO V.a)	ENDF/B-VII	238	
GRS	Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH	MONTEBURNS 2.0 (MCNP5 + ORIGEN2.2)	JEFF-3.1 based, available from NEA Data Bank as package ZZ-MCJEFF3.1NEA	CE	
LLNL	Lawrence Livermore National Laboratory	MOCUP, MCNP5 Version 1.40 + ORIGEN2.2	ENDF/B-VII.0	CE	
VTT 1	VTT Technical Research Centre of Finland	Serpent Monte Carlo reactor physics burn-up calculation code, version 1.1.2	ENDF/B-VII, no probability table treatment for unresolved resonances	CE	
ORNL 1		SCALE 6.1ß, TRITON t-depl sequence			
ORNL 2	Oak Ridge National Laboratory	SCALE 6.1ß, TRITON t5-depl sequence (KENO V.a)	ENDF/B-VII.0	238	
ORNL 3		SCALE 6.1ß, TRITON t-depl-1d sequence			
ORNL 4		(XSDRN)			
LANL	Los Alamos National Laboratory	MCNPX2.7b	ENDF-7	CE	
KAERI 1		HELIOS	ENDF/B-VI.8	190	
KAERI 2	Korea Atomic Energy Research Institute	MCCARD	ENDF/B-VII	CF	
KAERI 3		MOONLD			
UNAM	National Autonomous University of Mexico (UNAM) - College of Engineering	MCNPX version 2.6.0	ENDF/B-VI and JEFF 3.1	CE	
INL/ PolyMtl	Idaho National Laboratory and Polytechnique Montreal	DRAGON 4.03	ENDF/B-VII	361	

Относительное отклонение результатов расчета от средних значений для выгорания ячейки микротвэла, %

8

Vanavranuaruva	Глубина выгорания, ГВт·сут/т							
ларактеристика	0	0,5	5	10	20	40	80	120
К _{inf}	-0,40	-0,44	-0,45	-0,45	-0,50	-0,35	-0,45	-0,57
Масса актинидов, г/т U								
²³⁵ U	_	0,08	-0,02	-0,04	-0,15	-0,19	0,29	1,47
²³⁸ U	-	-0,03	-0,02	-0,03	-0,02	-0,05	-0,07	-0,04
²³⁹ Pu	-	3,00	3,06	2,69	2,29	1,47	1,69	1,52
²⁴⁰ Pu	-	7,91	4,68	3,30	2,65	2,20	1,50	1,50
²⁴¹ Pu	-	10,15	6,25	4,43	3,50	2,77	1,38	1,11
²⁴² Pu	-	48,40	9,29	6,12	5,02	4,30	3,29	3,64
²⁴¹ Am	-	35,24	8,14	4,34	2,83	2,50	0,84	0,78
²⁴⁴ Cm	-	55,06	24,23	4,39	0,61	-1,64	-1,82	-2,40
²⁴⁵ Cm	-	-96,64	33,02	28,29	3,53	0,54	0,56	1,25
Масса продуктов деления,	г/т U							
⁸⁵ Kr	-	6,32	6,51	6,50	6,27	6,00	5,89	5,84
⁹⁰ Sr	-	0,94	0,86	0,79	0,62	0,35	0,79	0,05
^{110m} Ag	-	13,89	23,10	31,79	32,14	27,47	16,49	6,88
¹³⁷ Cs	-	1,18	1,20	1,12	1,24	1,21	1,28	1,25
¹³⁵ Xe	-	-0,14	0,38	0,63	1,02	1,07	3,08	4,50
¹⁴⁹ Sm	-	2,06	4,39	4,05	7,03	3,96	7,48	11,04
¹⁵¹ Sm	-	-1,46	1,31	0,94	1,55	1,19	2,67	4,13
Спектральные индексы								
ρ ²³⁸	1,09	1,26	1,51	1,73	1,71	1,49	2,68	3,21
δ ²³⁵	-0,86	-0,98	-0,54	-0,01	0,34	0,36	2,58	3,86
δ238	-0.65	-0.60	-0.38	0.01	-0.02	-0.26	0.30	-2 15

Относительное отклонение результатов расчета от средних значений для выгорания шарового топливного элемента, %

Vapartopuotura	Глубина выгорания, ГВт·сут/т							
Ларактеристика	0	0,5	5	10	20	40	80	120
К _{inf}	0,07	0,12	0,08	0,14	0,14	0,18	0,42	1,54
Масса актинидов, г/т U								
²³⁵ U	-	-0,03	-0,12	-0,22	-0,53	-1,43	-4,65	-8,32
²³⁸ U	-	0,05	0,06	0,05	0,07	0,04	0,01	0,00
²³⁹ Pu	-	1,22	0,78	0,37	0,06	-0,04	0,44	1,72
²⁴⁰ Pu	-	5,32	2,78	1,89	1,31	0,39	-0,96	-0,90
²⁴¹ Pu	-	12,02	4,97	3,64	3,07	3,37	2,03	1,82
²⁴² Pu	-	39,56	7,41	5,67	4,91	4,49	3,99	2,71
²⁴¹ Am	-	40,66	6,70	4,00	1,86	-0,60	-5,74	-8,37
²⁴⁴ Cm	-	77,88	33,56	10,41	1,67	1,62	2,39	0,50
²⁴⁵ Cm	-	136,62	30,06	28,23	28,54	2,30	4,68	5,01
Масса продуктов деления,	г/т U							
⁸⁵ Kr	-	2,19	4,72	4,88	4,80	4,77	4,65	4,64
⁹⁰ Sr	-	1,59	1,57	1,42	1,31	1,14	0,63	0,35
^{110m} Ag	-	28,07	-1,76	-0,83	0,69	-0,63	-5,99	-15,57
¹³⁷ Cs	-	1,42	1,22	1,23	1,15	0,94	0,80	0,51
¹³⁵ Xe	-	0,06	0,06	-0,07	-0,08	-0,22	0,51	2,74
¹⁴⁹ Sm	-	0,90	0,78	0,94	2,37	1,84	2,84	4,81
¹⁵¹ Sm	-	-0,20	1,03	0,59	0,42	1,28	2,03	2,14
Спектральные индексы								
ρ ²³⁸	-1,96	-1,47	-1,92	-2,06	-2,41	-2,52	-2,09	-0,94
δ ²³⁵	-0,22	-0,03	-0,42	-0,69	-1,00	-1,26	-0,63	0,79
δ ²³⁸	4,55	4,80	4,64	4,98	4,56	4,97	7,49	11,41

9

Относительное отклонение результатов расчета от средних значений для выгорания призматического топливного блока, %

Vanavzanuazuva	Глубина выгорания, ГВт⋅сут/т								
Λαμακτερμοτικά	0	0,5	5	10	20	40	80	120	
К _{inf}	-0,08	-0,07	-0,05	-0,04	0,03	0,18	0,52	0,89	
Масса актинидов, г/т U									
²³⁵ U	-	0,02	-0,12	-0,25	-0,51	-1,20	-3,10	-5,21	
²³⁸ U	-	0,00	0,00	0,02	0,02	0,00	-0,03	-0,03	
²³⁹ Pu	-	-1,50	0,75	0,91	0,42	-0,07	-0,26	0,07	
²⁴⁰ Pu	-	-0,81	1,84	1,72	1,13	0,31	-1,03	-1,50	
²⁴¹ Pu	-	12,45	2,37	2,34	1,76	1,86	0,48	-0,22	
²⁴² Pu	-	18,25	8,67	4,60	3,49	3,22	3,43	3,18	
²⁴¹ Am	-	17,37	14,04	1,61	0,01	-1,96	-6,11	-9,94	
²⁴⁴ Cm	-	-19,78	3,77	7,18	-1,79	-1,21	-0,88	-1,21	
²⁴⁵ Cm	-	-99,45	25,34	29,70	11,55	4,99	0,11	1,70	
Масса продуктов деления,	г/т U								
⁸⁵ Kr	-	1,91	4,58	4,61	4,65	4,55	4,36	4,22	
⁹⁰ Sr	-	1,58	1,52	1,44	1,31	1,14	0,69	0,33	
^{110m} Ag	-	-11,55	-4,97	-2,03	-2,54	-5,89	-13,99	-22,51	
¹³⁷ Cs	-	1,52	1,59	1,46	1,43	1,25	1,12	0,87	
¹³⁵ Xe	-	0,10	0,21	0,27	0,40	0,70	2,00	3,43	
¹⁴⁹ Sm	-	-	3,29	3,30	3,88	3,29	4,40	4,40	
¹⁵¹ Sm	-	-2,08	0,60	0,08	-0,31	-0,05	0,71	0,76	
Спектральные индексы									
ρ ²³⁸	0,32	-1,63	-1,57	-1,45	-1,93	-2,69	-2,73	-2,61	
δ ²³⁵	-3,30	-1,80	-2,01	-2,08	-2,44	-3,13	-3,23	-3,22	
δ ²³⁸	-3,39	-3,39	-3,14	-3,36	-3,27	-3,33	-2,06	-0,78	

Результаты кросс-верификации

 $\succ K_{inf}$

Стандартное отклонение < 1 % для всех конфигураций В целом возрастает с увеличением выгорания Относительное отклонение находится в пределах 1 %

Спектральные индексы

Максимальное относительное отклонение ± 5 % Выраженного тренда в относительном отклонении в зависимости от выгорания не наблюдается

➤ Топливные изотопы

Относительное отклонение в основном ± 6 % Уменьшение относительного отклонения для изотопов с их накоплением Разброс данных с увеличением выгорания более выражен для минорных актинидов Am и Cm, содержание которых в топливе невелико Для Cm отличия достигают 30 % (при его содержании в облученной композиции на уровне микрограмм)

> Продукты деления

Относительное отклонение в основном от -2 % до 7 % Наибольшие отличия наблюдаются для ^{110m}Ag: от -22 до 32 % (очень малое накопление в топливе, неопределенность в коэффициентах ветвления библиотек распадов)

Спасибо за внимание