

Федеральное государственное бюджетное учреждение «Национальный исследовательский центр» «Курчатовский институт»

Алгоритм восстановления температурной зависимости дважды дифференциальных сечений для энергетической области термализации в расчётах методом Монте-Карло

Белоусов В.И., Иоаннисиан М.В., Малков М.Р.



### Введение

- В программном комплексе КИР реализован алгоритм непрерывного учета температурной зависимости для дважды-дифференциальных сечений в тепловой энергетической области.
- Создана библиотека, позволяющая выполнять моделирование рассеяния нейтронов в тепловой энергетической области для произвольной температуры в диапазоне от 300 К до 1000 К для водорода в воде и от 300 К до 1000 К для графита



#### Некогерентное неупругое рассеяние

$$\sigma(E \to E', \mu, T) = \frac{\sigma_b}{2kT} \sqrt{\frac{E'}{E}} e^{-\frac{\beta}{2}} S(\alpha, \beta, T)$$
$$\sigma_b = \sigma_b \left(\frac{A+1}{2}\right)^2$$

$$\mathcal{O}_b \mathcal{O}_f (A)$$

$$\alpha = \frac{E + E' - 2\mu\sqrt{EE'}}{AkT} \qquad \qquad \beta = \frac{E' - E}{kT}$$

$$S(lpha,eta,T)$$
 - функция рассеяния

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

## Минимальное и максимальное значение параметра *α*

$$\alpha_{-} = \frac{\left(\sqrt{E} - \sqrt{E + \beta kT}\right)^2}{AkT}$$

$$\alpha_{+} = \frac{\left(\sqrt{E} + \sqrt{E + \beta kT}\right)^{2}}{AkT}$$

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

α

#### Функции распределения параметров *α* и *β*

$$G(\beta, E, T) = \frac{\int_{\beta_{-}}^{\beta} e^{-\frac{\beta}{2}} \int_{\alpha_{-}}^{\alpha_{+}} S(\alpha, \beta, T) d\alpha d\beta}{\int_{\beta_{-}}^{\beta_{-}} e^{-\frac{\beta}{2}} \int_{\alpha_{-}}^{\alpha_{+}} S(\alpha, \beta, T) d\alpha d\beta} \qquad H(\alpha, \beta, E, T) = \frac{\int_{\alpha_{-}}^{\beta} S(\alpha, \beta, T) d\alpha}{\int_{\alpha_{-}}^{\alpha_{+}} S(\alpha, \beta, T) d\alpha d\beta}$$

$$\hat{H}(\alpha,\beta,T) = \frac{\int_{0}^{\alpha} S(\alpha,\beta,T) d\alpha}{\int_{0}^{\infty} S(\alpha,\beta,T) d\alpha}$$



#### Модель полиномиальной регрессии

$$\beta(P_{j}, E_{i}, T) = \sum_{n=-N}^{N} a_{ijn} T^{\frac{n}{2}} + e_{ij}$$

$$\alpha(P_l,\beta_k,T) = \sum_{m=-M}^{M} b_{klm} T^{\frac{m}{2}} + e_{kl}$$

# Моделирование некогерентного неупругого рассеяния

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР

«КУРЧАТОВСКИЙ ИНСТИТУТ»

- 1. В энергетической сетке находим  $E_i$  и  $E_{i+1}$  такие, что  $E_i \le E \le E_{i+1}$
- 2. С датчика псевдослучайных чисел берем число  $\xi_{\beta}$  в сетке вероятностей находим два значения, такие что  $P_j \leq \xi_{\beta} \leq P_{j+1}$
- 3. Для температуры T находим значения  $\beta$  для энергий  $E_i$  И  $E_{i+1}$  и вероятностей  $P_j$  И  $P_{j+1}$  :  $\beta_{ij}$   $\beta_{ij+1}$   $\beta_{i+1j}$   $\beta_{i+1j+1}$

вычисляем  $\beta$  для энергии E и вероятности  $\xi_{\beta}$  :  $\beta = f_1(\beta_{ij}g_1 + \beta_{i+1j}g_2) + f_2(\beta_{ij+1}g_1 + \beta_{i+1j+1}g_2)$ где  $f_1 = \frac{P_{j+1} - \xi_{\beta}}{P_{j+1} - P_j}$   $f_2 = \frac{\xi_{\beta} - P_j}{P_{j+1} - P_j}$   $g_1 = \frac{E_{i+1} - E}{E_{i+1} - E_i}$   $g_2 = \frac{E - E_i}{E_{i+1} - E_i}$ 4. Для энергии E, температуры T и смоделированного  $\beta$  находим границы  $\alpha$  :  $\alpha_-$  И  $\alpha_+$ 

5. Для смоделированного  $\beta$  находим  $\beta_i$  и  $\beta_{i+1}$  такие что  $\beta_i \leq \beta \leq \beta_{i+1}$ 

# Моделирование некогерентного неупругого рассеяния

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР

«КУРЧАТОВСКИЙ ИНСТИТУТ»

- 6. Для значений  $\beta_i$  и  $\beta_{i+1}$  находим границы изменения  $\alpha$  и соответствующие им вероятности  $P_-$  и  $P_+$
- 7. С датчика псевдослучайных чисел берем число  $\xi$  и загоняем его в нужные нам границы:  $\xi' = \xi (P_+ P_-) + P_-$
- 8. В сетке вероятностей находим  $P_j$  и  $P_{j+1}$  такие, что  $P_j \leq \xi' \leq P_{j+1}$
- 9. Аналогично шагу 3 находим значения  $\alpha$  для  $\beta_i$  И  $\beta_{i+1}$  и вероятностей  $P_j$  И  $P_{j+1}$ находим смоделированное  $\alpha$  :  $\alpha = f_1(\alpha_{ij}g_1 + \alpha_{i+1j}g_2) + f_2(\alpha_{ij+1}g_1 + \alpha_{i+1j+1}g_2)$ где  $f_1 = \frac{P_{j+1} - \xi'}{P_{j+1} - P_j}$   $f_2 = \frac{\xi' - P_j}{P_{j+1} - P_j}$   $g_1 = \frac{\beta_{i+1} - \beta}{\beta_{i+1} - \beta_i}$   $g_2 = \frac{\beta - \beta_i}{\beta_{i+1} - \beta_i}$
- 10. Вычисляем энергию вторичного нейтрона и косинус угла рассеяния

$$E' = E + \beta kT \qquad \qquad \mu = \frac{E' + E - \alpha AkT}{2\sqrt{EE'}}$$



12.07.2024

Водород в воде начальная энергия 0.01136 эВ температура 300 К



12.07.2024 Графит температура 300 К начальная энергия 0.01136 эВ

«КУРЧАТОВСКИЙ ИНСТИТУТ»

#### Результаты расчета бенчмаркэксперимента MATR

| Вариант | Sig(lpha,etaig)ИЗ | Sig(lpha,etaig) из | Полиномы из       |  |
|---------|-------------------|--------------------|-------------------|--|
|         | ENDF/B 7.1        | фононного          | фононного спектра |  |
|         |                   | спектра            | φοποιποιο επεκιρα |  |
| 1       | 1.00293654        | 1.00061510         | 1.00050961        |  |
| 2       | 1.00227204        | 1.00084034         | 0.99992474        |  |
| 3       | 1.00572583        | 1.00310507         | 1.00357587        |  |
| 4       | 1.00105157        | 0.99888310         | 0.99804107        |  |
| 5       | 1.00430629        | 1.00173857         | 1.00176303        |  |
| 6       | 1.00207185        | 1.00029425         | 0.99909632        |  |

«КУРЧАТОВСКИЙ ИНСТИТУТ»

#### График потока нейтронов для бенчмарка MATR вариант 1



### Когерентное упругое рассеяние $\frac{d^2\sigma}{dEd\Omega}(E \to E', \mu, T) = \frac{1}{E} \sum_{i=1}^{E_i < E} s_i(T) \delta(\mu - \mu_i) \delta(E - E') / 2\pi$

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР

«КУРЧАТОВСКИЙ ИНСТИТУТ»

- *E*<sub>i</sub> энергетические границы ступенек Брэгга
- µ<sub>i</sub> косинусы углов рассеяния, соответствующие ступенькам Брэгга
- s<sub>i</sub> структурные множители ступенек Брэгга

$$\mu_i = 1 - \frac{2E_i}{E},$$

Как можно видеть из формул, угол рассеяния является дискретной случайной величиной:

$$P(\mu = \mu_i) = \frac{s_i(T)}{\sum_{i=1}^m s_i(T)},$$

 $S_{i-1}(T) < \gamma S_m(T) \leq S_i(T)$ 

на этапе монтекарловского расчета моделируем Брэгговскую ступеньку для нужной температуры:

и записываем их в библиотеку

n = -N

$$S_k(T) = \sum_{k=1}^{N} a_{kn} T^{\frac{n}{2}} + e_k$$

для каждого k находим коэффициенты полинома

 $S_k(T) = \sum_{i=1}^{\kappa} S_i(T)$ Обозначим

#### Моделирование когерентного упругого рассеяния



«КУРЧАТОВСКИЙ ИНСТИТУТ»

«КУРЧАТОВСКИЙ ИНСТИТУТ»

### Результаты расчета бенчмаркэксперимента IGR

| Вариант | S(lpha,eta)из<br>ENDF/В 7.1<br>для воды и<br>для графита | Для графита $S\left( lpha,eta ight)$ из ENDF/B 7.1,<br>для воды $S\left( lpha,eta ight)$ из<br>фононного спектра | Sig( lpha,etaig)из<br>фононного<br>спектра для<br>графита и для<br>воды | Для воды<br>полиномы из<br>фононного спектра,<br>для графита<br>S(lpha,eta)из<br>фононного спектра | Полиномы<br>из фононного<br>спектра для<br>графита и для<br>воды |
|---------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1       | 1.02303639                                               | 1.02371986                                                                                                       | 1.01216187                                                              | 1.01154555                                                                                         | 1.00702075                                                       |
| 2       | 1.00512488                                               | 1.00431283                                                                                                       | 0.99410252                                                              | 0.99361352                                                                                         | 0.98894752                                                       |
| 3       | 1.00271261                                               | 1.00194024                                                                                                       | 0.98900988                                                              | 0.98784219                                                                                         | 0.98273899                                                       |
| 4       | 1.00879538                                               | 1.00881535                                                                                                       | 0.99677996                                                              | 0.99576171                                                                                         | 0.99241079                                                       |
| 5       | 1.01913612                                               | 1.01928867                                                                                                       | 0.99337571                                                              | 0.99364787                                                                                         | 0.99320065                                                       |
| 6       | 1.02220906                                               | 1.02419256                                                                                                       | 0.99599363                                                              | 0.99577578                                                                                         | 0.99840119                                                       |



# Поток нейтронов бенчмарк IGR вариант 1



«КУРЧАТОВСКИЙ ИНСТИТУТ»

## Некогерентное упругое рассеяние

$$\frac{d^2\sigma}{dEd\Omega} \left( E \to E', \mu, T \right) = \frac{\sigma_b}{4\pi} e^{-2EW'(T)(1-\mu)} \delta\left( E - E' \right),$$

$$f_{\mu}(x) = k e^{-2EW'(T)(1-\mu)(1-x)},$$

$$W'(T) = \sum_{n=-N}^{N} a_n T^{\frac{n}{2}} + l$$

$$\mu = 1 + \frac{\ln \left( e^{-4EW'(T)} + \gamma \left( 1 - e^{-4EW'(T)} \right) \right)}{2EW'(T)},$$

12.07.2024

-



В программном комплексе КИР модифицирован физический модуль, возможность моделирования рассеяния нейтронов добавлена В тепловой энергетической области при произвольной температуре

Разработана программа для библиотек независимая ПОДГОТОВКИ коэффициентов полиномов для вышеуказанного модуля

Подготовлены библиотеки коэффициентов полиномов для водорода в воде и углерода в графите

По обновленной версии КИР были проведены тестовые расчеты, которые показали корректную работу разработанных алгоритмов



#### Работа основана на статье

Andrew T. Pavlou, Wei Ji, Forrest B. Brown

Implementation and testing of the on-the-fly thermal scattering Monte Carlo sampling method for graphite and light water in MCNP6

Annals of Nuclear Energy, Volume 91, May 2016, Pages 111 - 126



### Спасибо за внимание!

