

Результаты апробации программы MNT-CUDA на тепловых и быстрых системах с библиотекой БНАБ-РФ

Научно-практическая конференция «Нейтронно-физические проблемы атомной энергетики (НЕЙТРОНИКА–2024)»

28.05 - 31.05.2024

Варфоломеева Валерия Андреевна

Грушин Н.А., Иванов И.Е., Бычков С.А., Андрианова О. Н.

Программа MNT-CUDA

- MNT-CUDA инженерная программа повышенной точности расчёта НФХ в многогрупповом приближении методом Монте-Карло с возможностью использования технологий параллельных вычислений на графических процессорах.
- МNT-CUDA 2.0 [1] разработана в АО «ВНИИАЭС», ориентирована на полномасштабные расчеты характеристик реакторов с возможностью детализации геометрии реактора или его фрагментов, верифицирована и аттестована для расчётов НФХ реакторной установки с РБМК-1000.
- В рамках НИОКР в АО «ВНИИАЭС» на базе MNT-CUDA 2.0 ведётся разработка новой универсальной программы для расчёта реакторов различных типов.

Подготовка констант

Для проведения кросс-верификации инженерной программы MNT-CUDA путем сопоставления с прецизионными и групповыми расчетов HФX бесконечных ячеек BBЭP и БФС использовались различные способы подготовки блокированных макроконстант:

- свертка нейтронных макроконстант
 в 65 энергетических групп (Р1приближение для рассеяния)
 с помощью программы MCU-5.
- на основе групповой библиотеки БНАБ-РФ и программы CONSYST-RF с помощью специальной методики учета гетерогенных эффектов [2]. Блокированные макроконстанты готовятся в 299 энергетических группах (Р5-приближение для рассеяния).

Учет гетерогенных эффектов в CONSYST

В системе CONSYST реализовано несколько способов учета гетерогенных эффектов при подготовке многогрупповых макроскопических сечений, основанных на принципе эквивалентности гомогенных и гетерогенных сред (т.н. принципа эквивалентности).

- 1. Автоматическое вычисление поправок для системы с помощью блока GETER (применяют для ячеек BBЭР).
- 2. Путем задания фиктивного изотопа δ-рассеивателя (гетерогенной поправки в сечение разбавления резонансного нуклида), значение концентрации которого (D-SC) вычисляет внешняя программа (такой модуль был разработан для MNT-CUDA).
- 3. Выделением дополнительных фиктивных материальных зон блокировки, для изотопного состава которых будет вычислены сечения разбавления.
- 4. Комбинацией 2 и 3 способа (применяют для БФС).

Расчётные тесты водо-водяных ячеек

Рисунок 1. Визуализация расчётной модели ячейки ВВЭР в программе MNT-CUDA

Рассмотрено 54 варианта водо-водяных ячеек с изменяемыми параметрами:

- шаг решетки варьировался от 0,9 до 1,8 см (6 вариантов),
- плотность воды от 0,2 до 1 г/см³ (5 вариантов),
- обогащение топлива от 0,7 до 6 % (9 вариантов),
 - различные температуры топлива (300, 558, 579, 1000, 1027К) и теплоносителя (300, 558, 579К),
 - наличие/отсутствие выгорающих поглотителей в топливе и теплоносителе,
 - наличие/отсутствие ксенона в топливе.

Сводные результаты расчетов ячеек ВВЭР

Расчеты были выполнены по прецизионному коду MCU-5 с подготовкой блокированных макроконстант для MNT-CUDA.

Абсолютные отклонения групповых расчётов от прецизионных (мин – макс):

k _{inf} :	0,06 – 0,58 %
Поглощение в топливе:	0,05 – 0,25 %
Поглощение в оболочке	
и теплоносителе:	0,09 – 0,50 %
Генерация в топливе:	0,01 – 0,38 %

Расчеты были выполнены по прецизионному коду МСNP(РОСФОНД) и MNT-CUDA(БНАБ-РФ) с учетом резонансных гетерогенных эффектов с помощью блока GETER/CONSYST. Абсолютные отклонения групповых расчётов от прецизионных (мин – макс):

ACE (GETER)

Методика

k:	0 15 – 0 46 %	k _{inf} :	0,08 - 0,35 %
	0.02 - 0.53%	Поглощение в топливе:	0,01 - 0,12 %
Поглощение в оболоцке:	0,02 = 0,03 %	Поглощение в оболочке:	0,01 – 0,03 %
Поглощение в теплоносителе:	0,07 = 0,40%	Поглощение в теплоносителе:	0,01 – 0,08 %
Гоплощение в теплоносителе. Генерация в топпиве:	0,01 = 0,00 %	Генерация в топливе:	0,03 – 0,36 %
ГСПСРАЦИЯ В ТОПЛИВС.	0,01 - 0,73 / 0		

Результаты расчетов ячеек ВВЭР по MNT-CUDA с различными способами подготовки блокированных макроконстант

Рисунок 2. Абсолютные отклонения коэффициента размножения, полученные по программе MNT-CUDA с 65-групповыми сечениями из MCU и 299-групповыми сечениями из БНАБ-РФ от соответствующих значений прецизионных расчётов

Результаты расчетов ячеек ВВЭР с автоматической процедурой вычисления гетерогенных поправок

Рисунок 3. Относительные отклонения в сечении захвата ²³⁸U при расчетах с групповой библиотекой БНАБ-РФ с учетом резонансных гетерогенных эффектов с помощью итерационной процедуры вычисления гетерогенной поправки внииаэс

Ячейки БФС (экспериментальный бенчмарк)

Рассмотрена серия из одиннадцати экспериментов на критических стендах БФС [3] по измерению нейтронно-физических характеристик размножающих свойств систем без утечки нейтронов, т.н. коэффициента размножения нейтронов в бесконечной среде k_{∞}

Активные зоны сборок были скомпонованы из различных таблеток уранового и плутониевого топлива в металлических или алюминиевых оболочках, составляющих многократно повторяющуюся ячейку, помещенную в стальные или алюминиевые трубы.

Рисунок 4. Схема расчетной модели бесконечной ячейки для сборки БФС-34-1 (на границах ячейки стоит условие зеркального отражения или периодической решетки)

Ячейки БФС с урановым топливом

внииаэс

а) БФС-35-1: 2U(d) - U(36) - U(d), AI

б) БФС-35-2: 2U(d) - U(36) - 2U(d) - U(90)t - 2U(d) - U(36) - U(d), AI

в) БФС-35-3: 4U(d) - U(90) - 4U(d), AI

г) БФС-33-1-1: 5[U(d)O2 - U(90) O2] - U(d)O2, Steel

д) БФС-33-1-3: 3U(d)O2 - 5U(90)O2 - 3U(d)O2, Steel

e) БФС-33-2-1: 10[U(90)O2 - U(d)O2], Steel

е) БФС-33-2-1 д) БФС-33-1-3 г) БФС-33-1-1 Рисунок 5. Ячейки БФС с урановым топливом

10

Ячейки БФС с уран-плутониевым топливом

a) БФС-42: U(d)O₂ - PE - 2U(d)O₂ - Pu(95) - 2U(d)O₂ - PE - U(d)O₂, Steel

б) БФС-31-4: 3U(d)O2 - Pu(95) - 3U(d)O2, Steel

в) БФС-31-5: 3U(d)O2 - Pu(95) - 7U(d)O2 - Pu(95) - 3U(d)O2, Steel

г) БФС-38-1: 2U(d) - Pu(95) - 5U(d) - Pu(95) - 2U(d), Steel

д) БФС-38-2: 2U(d) - Pu(95) - U(d), Steel

г) БФС-38-1 д) БФС-38-2 Рисунок 6. Ячейки БФС с уран-плутониевым топливом внииаэс

Результаты расчетов ячеек БФС

Таблица 1. Коэффициент размножения нейтронов в бесконечной среде k_{∞} при различных гетерогенных поправках, а также при их отсутствии

- Р(1) прецизионный расчет,
- Р(2) групповой расчет без гетерогенных поправок,
- Р(3) групповой расчет с заданием зоны блокировки соответствующей гомогенному составу ячейки,
- Р(4) групповой расчет с гетерогенными поправками из бенчмарка [3].

Сборка	РОСФОНД	БНАБ-РФ (299)	P(2)/P(1) -1,%	БНАБ-РФ (гом.)	P(3)/P(1) -1,%	БНАБ-РФ [3]	P(4)/P(1) -1,%
	P(1)	P(2)		P(3)		P(4)	
БФС-31-4	1,00630	1,01034	0,40	1,0066	0,03	1,00966	0,33
БФС-31-5	0,96901	0,97283	0,39	0,9696	0,06	0,97215	0,32
БФС-33-1-1	0,96560	0,97722	1,20	0,9637	-0,20	0,97041	0,50
БФС-33-1-3	0,96444	0,97460	1,05	0,9610	-0,36	0,96699	0,26
БФС-33-2-1	0,99997	1,01169	1,17	0,9980	-0,20	1,00481	0,48
БФС-35-1	0,97097	0,97321	0,23	0,9703	-0,07	0,97018	-0,08
БФС-35-2	0,99884	1,00149	0,27	0,9982	-0,06	0,99786	-0,10
БФС-35-3	0,99099	0,99365	0,27	0,9892	-0,18	0,99146	0,05
БФС-38-1	0,96190	0,96784	0,62	0,9606	-0,14	0,96765	0,60
БФС-38-2	1,01612	1,02189	0,57	1,0141	-0,20	1,02126	0,51
БФС-42	1,01007	1,01802	0,79	1,0129	0,28	1,01827	0,81

Сводные результаты расчетов ячеек БФС

Таблица 2. Абсолютные отклонения коэффициентов размножения при прецизионных и групповых расчётах по программам MCU, MCNP, MNT-CUDA от значений из бенчмарка

		MOU		MCNP	MNT-CUDA	MNT-CUDA
Сборка	Бенчмарк	MCU	MNI-CUDA	(детальный расчёт,	БНАБ-РФ	БНАБ-РФ
-		(65 rpyIII)	(65 rpyIII)	РОСФОНД)	(299, ACE)	(299, методика)
БФС-31-4	1,0188	-0,44 %	-0,48 %	-1,27 %	-1,22 %	-1,22 %
БФС-31-5	0,9732	0,21 %	0,15 %	-0,42 %	-0,36 %	-0,36 %
БФС-33-1-1	0,9656	-0,01 %	0,06 %	0,00 %	-0,19 %	-0,07 %
БФС-33-1-3	0,9602	0,43 %	0,39 %	0,42 %	0,08 %	0,42 %
БФС-33-2-1	0,9967	0,30 %	0,40 %	0,34 %	0,12 %	0,30 %
БФС-35-1	0,973	0,34 %	0,25 %	-0,19 %	-0,27 %	-0,32 %
БФС-35-2	1,0044	-0,08 %	-0,17 %	-0,55 %	-0,62 %	-0,62 %
БФС-35-3	0,9959	-0,02 %	-0,08 %	-0,49 %	-0,67 %	-0,67 %
БФС-38-1	0,9669	0,20 %	0,19 %	-0,48 %	-0,63 %	-0,63 %
БФС-38-2	1,0276	-0,61 %	-0,62 %	-1,16 %	-1,35 %	-1,35 %
БФС-42	1,0153	-0,08 %	-0,15 %	-0,51 %	-0,75 %	-0,75 %

Результаты

- Δ_κ абсолютное отклонение коэффициента размножения
- δ_κ относительное отклонение коэффициента размножения
- δ*F* относительное отклонение интегрального потока по энергии
- δ_γ относительное отклонение жёсткости спектра

Величина:	Мах отклонение :		
ВВЭР	MCU	БНАБ-РФ	
Δ _K	0,6 %	0,4%	
δ _κ	0,3 %	0,12 %	
δF	0,3 %	0,9 %	
δ _γ	0,9 %	3,7 %	
δ _γ в отдельных группах	2,0 %	-	
БФС	MCU	БНАБ-РФ	
Δ _κ	0,4 %	0,18	
δF	0,3 %	-	
δF в отдельных группах	0,1 %	_	

Спасибо за внимание

Варфоломеева Валерия Андреевна

Инженер 1 категории

Тел.: +7 (499) 796 91 26 E-mail: VAVarfolomeeva@vniiaes.ru

2024 г.