

Расчетное моделирование облучательных экспериментов МОКС и СНУП топлива по программному комплексу MCU-NR

«Нейтронно-физические проблемы атомной энергетики», г. Обнинск

Докладчик: Ромадинов Александр Михайлович

Техник

Авторы: Ромадинов А.М., Федоров И.А., Юферева В.А.

28.05.2024 - 31.05.2024

Цели и задачи

Основной целью настоящей работы является верификация программного комплекса (ПК) MCU-NR в части изотопной кинетики и выгорания ядерного топлива.

Для достижения поставленной цели решены следующие задачи:

- 1. Проведено расчетное моделирование эксперимента по облучению образцов актинидов в реакторе БН-350 и эксперимента по выгоранию СНУП-топлива КЭТВС-1 и КЭТВС-7 в реакторе БН-600.
- 2. Созданы бенчмарк-модели экспериментов на БН-350 и БН-600 и проведена кроссверификация ПК MCU-NR по кодам FACT-BR и BPSD.
- 3. Разработан расчетный тест выгорания твэлов КЭТВС в РУ БРЕСТ-ОД-300.
- 4. Проведено расчетное исследование в обоснование возможности использования модели бесконечной решетки гетерогенных ячеек при расчете выгорания и изотопной кинетики в реакторах на быстрых нейтронах.

Программный комплекс MCU-NR

ПК MCU-NR выполняет численное моделирование процесса переноса нейтронов методом Монте-Карло на основе оцененных нейтронных данных в системах с трехмерной геометрией.

Физический модуль позволяет учитывать эффекты непрерывного изменения энергии частицы при столкновениях, а также непрерывную зависимость сечений от энергии.

Расчет выгорания в MCU-NR выполняется по временным шагам. На каждом шаге решаются две независимые задачи:

1. Расчет методом Монте-Карло средних по зонам потоков нейтронов и сечений при заданном нуклидном составе реактора;

2.Расчет изменения нуклидного состава при заданных потоках нейтронов и сечениях реакций (выполняется с помощью модуля BURNUP).

Эксперимент на БН-350

Образцы топлива облучались в течение двух микрокампаний (22-ой и 23-ей)

Образец №2 – МОХ Образец №3 – UO₂ (90%) Образец №4 – РиО₂ (96%) Образец №5 – МОХ

Рисунок 2 – Схема размещения образцов в БН-350, штриховкой выделены образцы

Схема размещения капилляра с образцами в ТВС БН-350

Описание модели эксперимента на БН-350

Параметр	Значение, см
Высота модели	255,69
Размер под ключ	9,8
Диаметр капилляра	1,6
Диаметр образцов	1,0
Высота образца	25

Параметр	Значение, сут
22 MK	103,9
23 MK	103,6
Перегрузка	22

Модель представляет собой полномасштабную по высоте трехмерную ТВС, в которой устанавливалась капиллярная трубочка с образцами топлива.

Граничное условие на боковых гранях ТВС – отражение, по торцам – полное поглощение (утечка).

Для каждого образца мощность ТВС подбиралась таким образом, чтобы в расчете получить измеренную радиоактивность ¹³⁷Cs и/или ¹⁴⁴Ce.

Относительные доли нуклидов в урановой и плутониевых фракциях

Образец №2 - МОХ1 (3,5 МВт)

Нуклид	Эксперимент, %	Эксперимент, % Расчет, %	
235	0,442	0,437	-1,13
238	99,56	99,56	0,00
²³⁸ Pu	0,503 0,522		3,78
²³⁹ Pu	73 73,07		0,10
²⁴⁰ Pu	²⁴⁰ Pu 19,8 19,7		-0,51
²⁴¹ Pu	3,78	3,8	0,53
²⁴² Pu	2,61	2,6	-0,38
²⁴¹ Am	0,28	0,29	3,57
²⁴² Cm	0,0087	0,0103	18,39

Образец №5 - МОХ2 (3,0 МВт)

Нуклид	Эксперимент, %	Расчет, %	Отклонение, %(Р-Э)/Э
²³⁵ U	0,4504	0,4417	-1,93
²³⁸ U	99,55	99,56	0,01
²³⁸ Pu	Pu 0,504 0,525		4,17
²³⁹ Pu	73,05	73,16	0,15
²⁴⁰ Pu	19,69	19,60	-0,46
²⁴¹ Pu	3,84	3,81	-0,78
²⁴² Pu	2,61	2,598	-0,46
²⁴¹ Am	0,30	0,29	-3,33
²⁴² Cm	0,0079	0,0095	20,25

Нуклид	/клид Эксперимент, Расчёт, 10 ^{9.} Бк 10 ^{9.} Бк		Отклонение, %(Р-Э)/Э	
¹³⁷ Cs	0,424	0,423	-0,24	
¹⁴⁴ Ce	6,77	7,51	10,93	

Нуклид	Эксперимент, Расчёт, 10 ^{9.} Бк 10 ^{9.} Бк		Отклонение, %(Р-Э)/Э	
¹³⁷ Cs 0,409		0,410	0,24	
¹⁴⁴ Ce	7,00	7,28	4,00	

Относительные доли нуклидов в урановой и плутониевых фракциях

Нуклид	Эксперимент, %	Расчет, %	Отклонение, %(Р-Э)/Э				
²³⁴ U	0,996	0,997	0,05				
235U	83,07	83,24	0,20				
236U	4,17	4,06	-2,64				
238U	11,77	11,70	-0,59				

Образец №3 - ЦО, (3.1 MRт)

Нуклид	Эксперимент, 10 ^{9.} Бк	Расчёт, 10 ^{9.} Бк	Отклонение, % (Р-Э)/Э
¹³⁷ Cs	4,24	4,25	0,24
¹⁴⁴ Ce	110	107,0	-2,73

Образец №4 - РиО₂ (3,2 МВт)

Нуклид	Эксперимент, %	сперимент, % Расчет, %	
²³⁸ Pu	0,0136	0,0112	-17,65
²³⁹ Pu	92,01	91,73	-0,31
²⁴⁰ Pu	7,52	7,80	3,83
²⁴¹ Pu	¹ Pu 0,298 0,320		7,38
²⁴² Pu	0,0209	0,0145	-30,62
²⁴¹ Am	n 0,1275 0,1154		-9,49
^{242m} Am	0,0036	0,0030	-16,67
²⁴² Cm	0,00742	0,00657	-11,46
Нуклид	Эксперимент, 10 ^{9.} Бк	Расчёт, 10 ^{9.} Бк	Отклонение , % (Р-Э)/Э
¹³⁷ Cs	2,95 7,5		154,24
¹⁴⁴ Ce	Ce 125 125		0,00

7

Кроссверификация ПК MCU-NR по коду FACT-BR и программе BPSD/v2.1

Основа бенчмарка – расчетная модель FACT-BR.

Капилляр – гомогенная шестигранная призма высотой 106,8 см и размером под ключ 0,87 см.

Мощность ячейки в бенчмарке - 3,384 МВт.

Было проведено сравнение результатов pacчетов MCU-NR, FACT-BR и BPSD.

Поперечное сечение бенчмарк-модели эксперимента на БН-350

Результаты расчетов эксперимента на БН-350 в бенчмарк-модели

Образец №2 (МОХ1)

Величина,	Нуклид	BPSD	FACT-BR	Отклонение	MCU-NR	Отклонение
единицы				FACT-BR от		MCU-NR от
измерения				BPSD, %		BPSD, %
Относительна	²³⁵ U	0,44	0,442	0,45	0,438	-0,52
я доля, ат. %	²³⁸ U	99,56	99,558	0,00	99,562	0,00
	²³⁸ Pu	0,526	0,531	0,95	0,522	-0,79
	²³⁹ Pu	73,18	73,136	-0,06	73,115	-0,09
	²⁴⁰ Pu	19,63	19,621	-0,05	19,666	0,19
	²⁴¹ Pu	3,79	3,804	0,37	3,798	0,21
	²⁴² Pu	2,59	2,602	0,46	2,594	0,15
	²⁴¹ Am	0,283	0,291	2,83	0,287	1,27
	²⁴² Cm	0,0104	0,01	-3,85	0,01	-3,85
Активность,	¹³⁷ Cs	0,427	0,389	-8,90	0,415	-2,78
10 ⁹ Бк	¹⁴⁴ Ce	7,79	6,92	-11,17	7,33	-5,86

Результаты расчетов эксперимента 🤯 на БН-350 в бенчмарк-модели

Образец	Величина	Нуклид	BPSD	FACT-BR	Отклонение	MCU-NR	Отклонение
					(F-B)/B, %		(M-B)/B, %
Nº20 (002)	Отн. доля,	²³⁴ U	0,996	0,99	-0,60	1,001	-0,52
	ат. %	²³⁵ U	83,154	83,47	0,38	82,829	0,39
		²³⁶ U	4,118	3,87	-6,02	4,390	-6,61
		²³⁸ U	11,729	11,67	-0,50	11,780	-0,43
	Активность,	¹³⁷ Cs	4,20	4,07	-3,10	4,53	7,92
	10 ⁹ Бк	¹⁴⁴ Ce	113,00	106,00	-6,19	113,51	0,45

Образец	Величина	Нуклид	BPSD	FACT-BR	Отклонение	MCU-NR	Отклонение
N_{04} (Pu(O2)					(F-B)/B, %		(M-B)/B, %
IN≟∓ (I UOZ)	Отн. доля,	²³⁸ Pu	0,0131	0,01	-23,66	0,011	-12,83
	ат. %	²³⁹ Pu	91,839	91,98	0,15	91,487	-0,38
		²⁴⁰ Pu	7,709	7,56	-1,93	8,031	4,17
		²⁴¹ Pu	0,3006	0,31	3,13	0,337	12,00
		²⁴² Pu	0,0133	0,01	-24,81	0,0153	14,93
		²⁴¹ Am	0,1156	0,12	3,81	0,1154	-0,16
		²⁴² Cm	0,007	0,01	42,86	0,0032	-54,49
	Активность,	¹³⁷ Cs	7,38	7,49	1,49	7,80	5,75
	10 ⁹ Бк	¹⁴⁴ Ce	126,80	125,00	-1,42	129,18	1,88

КЭТВС-1 и КЭТВС-7 в БН-600

Схема КЭТВС-1

Режим облучения КЭТВС-1

Номер МК	65	66	67	68
Место облучения	3CO	3БО	3БО	BPX
Длительность МК,	132,6	163,4	137,1	157,8
эфф. сут				
Выдержка, кал.сут	9	41	10	541

Режим облучения КЭТВС-7

Схема КЭТВС-7

68	69	70	71	72
3CO	3CO	3CO	3CO	BPX
157,8	132,4	160,6	138,4	159,9
41	11	37	12	730
	68 3CO 157,8 41	68 69 3CO 3CO 157,8 132,4 41 11	6869703CO3CO3CO157,8132,4160,6411137	686970713CO3CO3CO3CO157,8132,4160,6138,441113712

Массовое содержание нуклидов в выгоревшем СНУП-топливе КЭТВС

	Массовое содержание, кг/т (U+Pu исх.)								
Изотоп		КЭТВС-1		KƏTBC-7					
	Измерение	Расчет	(P-Э)/Э, %	Измерение	Расчет	(P-Э)/Э, %			
²³² U	1,10×10 ⁻⁶	1,03×10 ⁻⁶	-6,6	-	1,57×10 ⁻⁶	-			
²³⁴ U	0,016(2)	0,025	54	-	0,003	-			
235U	1,77(2)	1,67	-5	0,89(5)	1,41	58			
236	0,20(2)	0,19	-3,0	0,29(6)	0,25	-15			
238U	818,94(5)	806,99	-1,5	796,3(2)	788,4	-1,0			
²³⁸ Pu	0,077(2)	0,072	-5,9	0,12(3)	0,08	-35			
²³⁹ Pu	123,60(17)	122,48	-0,9	116,12(4)	119,16	2,6			
²⁴⁰ Pu	13,78(13)	14,83	7,6	16,71(3)	17,90	7,1			
²⁴¹ Pu	0,660(3)	0,740	12	0,97(3)	1,07	11			
²⁴² Pu	0,037(2)	0,052	41	0,15(3)	0,08	-46			
²⁴¹ Am	0,22(1)	0,23	3,7	0,30(2)	0,21	-29			
^{242m} Am	3,60×10 ⁻³ (3)	5,50×10 ⁻³	53	3,00×10 ⁻³ (2)	1,34×10 ⁻³	-55			
²⁴³ Am	1,40×10 ⁻² (2)	2,42×10 ⁻³	-83	1,20×10 ⁻²	3,95×10 ⁻³	-67			
²⁴² Cm	2,80×10 ⁻⁴ (2)	1,03×10 ⁻⁴	-63	4,00×10 ⁻⁵	3,00×10 ⁻⁵	-25			

Оценка расчетной погрешности изменения нуклидного состава

По результатам верификации приняты следующие максимальные погрешности расчета изменения нуклидного состава по ПК MCU-NR:

- $-^{235}U 5\%$,
- $-^{238}U 2$ %,
- − ²³⁶U −15 %,
- $-^{234}U 55$ %,
- $-^{239}$ Pu -3%,
- ²⁴⁰Pu − 8 %,
- − ²⁴¹Pu − 12 %,
- ²³⁸Pu −35 %,
- ²⁴²Pu − 50 %,
- − ²⁴¹Am − 30 %,
- $-^{242m}Am 55$ %,
- $-{}^{242}Cm 60$ %.

Бенчмарк БРЕСТ-КЭТВС

Цель дополнительного расчетного исследования по ПК MCU-NR и ПК FACT-BR:

- Обоснование возможности переноса результатов оценки погрешности концентрации актинидов при выгорании топлива активной зоны в спектре РУ БН-600 (КЭТВС) на РУ БРЕСТ
- Дополнительная кроссверификация MCU-NR

Был разработан расчетный тест выгорания твэлов КЭТВС-1 и КЭТВС-7 в быстром реакторе со свинцовым теплоносителем БРЕСТ-ОД-300.

Проведены расчеты выгорания и изотопной кинетики экспериментального топлива КЭТВС в БРЕСТ-ОД-300 по ПК MCU-NR и ПК FACT-BR.

Относительные отклонения массовых содержаний нуклидов

Отклонения значений расчета в модели БРЕСТ-ОД-300 от расчета в модели БН-600

	КЭ⁻	TBC-1	КЭТВС-7		
Нуклид 	FACT-BR	MCU-NR	FACT-BR	MCU-NR	
²³⁴ U	-1.3	-0.5	-8.9	-18.6	
²³⁵ U	2.0	1.7	7.3	2.5	
²³⁶ U	-3.8	-4.0	-8.7	-4.6	
²³⁸ U	0.4	0.4	1.2	0.6	
²³⁸ Pu	-19.8	-13.3	-12.1	-20.5	
²³⁹ Pu	0.7	0.1	1.6	-0.3	
²⁴⁰ Pu	-0.1	-1.8	-5.1	-3.2	
²⁴¹ Pu	-3.0	-4.2	-12.2	-7.2	
²⁴² Pu	-4.5	-5.5	-16.6	-8.0	
²⁴¹ Am	0.2	-0.6	-8.1	-3.8	
¹⁴ C	-4.8	-2.0	-11.0	0.1	

По результатам расчетного эксперимента можно сделать вывод, что разница в спектральных характеристиках РУ БН-600 и РУ БРЕСТ-ОД-300 незначительно влияет на изменение изотопного состава в процессе выгорания для основных актинидов.

Расчетное исследование моделей ячеек

Цель исследования:

Обоснование возможности использования модели бесконечной решетки гетерогенных ячеек при расчете выгорания и изотопной кинетики в реакторах на быстрых нейтронах.

Проведён сравнительный анализ результатов расчета в моделях ячеек и в полномасштабной модели реактора.

Два варианта ячеек:

1 вариант – высота топливного столба (110 см), боковые границы – трансляция, торцевые границы – отражение 2 вариант – высота реакторной модели (510 см), боковые границы – трансляция,

торцевые границы – поглощение (утечка)

Схема модели ячейки БРЕСТ-300

Относительные отклонения массовых содержаний

17

Отклонения результатов расчета в моделях ячеек от расчета в модели реактора

	ТВС ПЗ -		ТВС ПЗ -		ТВС ЦЗ -		ТВС ЦЗ -	
Нуклид	Центральный твэл		Периферийный твэл		Центральный твэл		Периферийный твэл	
	Ячейка 1	Ячейка 2	Ячейка 1	Ячейка 2	Ячейка 1	Ячейка 2	Ячейка 1	Ячейка 2
³ H	3,3%	2,7%	-5,0%	-5,6%	1,4%	-2,6%	-2,6%	-6,4%
¹⁴ C	2,5%	4,0%	-7,1%	-5,5%	-2,6%	-4,0%	-7,1%	-8,5%
²³⁴ U	-0,1%	-0,5%	0,1%	-0,4%	-0,1%	0,1%	-0,1%	0,0%
²³⁵ U	-0,1%	-0,6%	0,2%	-0,3%	-0,4%	0,1%	0,0%	0,3%
²³⁶ U	1,4%	-1,7%	-2,4%	-5,5%	6,7%	0,1%	3,7%	-2,7%
²³⁸ U	0,0%	-0,5%	0,0%	-0,5%	0,0%	0,0%	0,0%	0,0%
²³⁸ Pu	-0,1%	-0,6%	0,2%	-0,3%	-0,1%	0,2%	0,0%	0,3%
²³⁹ Pu	0,0%	-0,5%	0,1%	-0,5%	0,2%	0,1%	0,3%	0,1%
²⁴⁰ Pu	0,0%	-0,6%	0,0%	-0,6%	0,2%	0,1%	0,0%	0,0%
²⁴¹ Pu	0,0%	-0,7%	-0,1%	-0,8%	0,6%	0,1%	0,2%	0,0%
²⁴² Pu	0,0%	-0,6%	0,1%	-0,5%	0,0%	0,1%	0,1%	0,1%
²⁴¹ Am	-0,1%	-0,6%	0,1%	-0,3%	-0,2%	0,1%	0,0%	0,2%
^{242m} Am	2,6%	-0,5%	-2,4%	-5,4%	6,1%	-0,3%	3,2%	-3,0%
²⁴³ Am	3,5%	-0,1%	-1,6%	-4,9%	5,6%	-0,7%	3,6%	-3,3%
²⁴² Cm	2,1%	-1,3%	-2,5%	-5,8%	6,8%	-0,1%	3,8%	-2,9%
²⁴³ Cm	4,7%	-1,2%	-4,5%	-10,1%	13,1%	-0,7%	7,6%	-5,6%
²⁴⁴ Cm	5,6%	-1,3%	-4,0%	-10,2%	13,8%	-0,7%	8,3%	-6,1%

Заключение

- Проведено расчетное моделирование эксперимента по облучению образцов актинидов в БН-350 и эксперимента по выгоранию экспериментального СНУП-топлива КЭТВС-1 и КЭТВС-7 в БН-600
- Разработаны бенчмарк-модели для кроссверификации MCU-NR по коду FACT-BR и программе для ЭBM BPSD/V2.1
- Разработан расчетный тест выгорания твэлов КЭТВС-1 и КЭТВС-7 в БРЕСТ-ОД-300 для обоснования возможности переноса результатов оценки погрешности концентрации актинидов топлива активной зоны при выгорании в БН-600 на БРЕСТ-ОД-300
- Проведены расчетные исследования в обоснование возможности использования модели бесконечной решетки гетерогенных ячеек при расчете выгорания и изотопной кинетики в реакторах на быстрых нейтронах. При использовании модели ячейки достигается хорошее согласие с полномасштабной моделью реактора.
- Результаты расчетов будут использованы при верификации и валидации ПК FACT-BR с усовершенствованным модулем выгорания

Спасибо за внимание

Ромадинов А.М.