

Научно-техническая конференция «Нейтроннофизические проблемы атомной энергетики (Нейтроника-2024)»

Оценка технического состояния и остаточного ресурса графитовой кладки Билибинской АЭС В.А. Павлюкова, И.В. Московченко, В.В. Сергеев, Ю.В. Матвеев

Павлюкова Виктория Александровна

Инженер-исследователь, АО «ГНЦ РФ-ФЭИ»

Обнинск,2024

Графитовая кладка - это конструктивный узел реактора ЭГП-6 Билибинской АЭС состоящий из графитовых блоков и являющийся замедлителем и отражателем нейтронов. По проекту графитовая кладка не подлежит замене и капитальному ремонту, в связи, с чем её ресурс определяет ресурс энергоблока в целом.

Конструкция графитовой кладки

Рис. 1 – Продольный разрез реактора ЭГП-6

верхнее боковое перекрытие; 2 - привод большого вращающегося перекрытия; 3 - центральная рама с опорами;
центральное вращающееся перекрытие; 5 - стояки; 6 - привод малого вращающегося перекрытия; 7 -опора катковая;
закладные части; 9 - опорные узлы; 10 - нижняя плита; 11 - графитовая кладка; 12 - канал СУЗ; 13 - ТВС; 14 - бак биологической защиты; 15 - кожух кладки; 16 - компенсатор кожуха; 17 - верхняя плита; 18 - групповые коллекторы с рабочими трубопроводами; 19³ вентили запорные; 20 - нижний слой защитного перекрытия

Параметры	Метод контроля
Прочность графита Снижение плотности графита	Исследование кернов графита, отбираемых из графитовых блоков.
Стрела прогиба колонны	Измерения искривления графитовой колонны
Величина телескопического соединения трактов	Измерения «теплового зазора»

Оценка возможного времени работы энергоблоков до достижения критического флюенса

Рис. 2 – Накопление флюенса в реакторе

Обследование кернов графита Билибинской АЭС

Рис. 3 – Макроскопическое фото образцов графитовой кладки энергоблоков Билибинской АЭС

Анализ измерений кривизны ячеек графитовой кладки

Рис. 4 – Изменение кривизны в течение эксплуатации реакторов энергоблоков Билибинской АЭС

Параметры технического состояния графитовой кладки

B настоящее время, согласно действующей «Методике оценки ресурса графитовой кладки реакторов ЭГП-6 Билибинской АЭС» предельнодопустимое значение величины зацепления B телескопическом соединении трактов установлено не менее 5 мм

Результаты измерений теплового зазора и ремонта ТСТ

Рис. 6 – Изменение величины теплового в течение эксплуатации реакторов энергоблоков Билибинской АЭС

Выводы

С 70-летием Первая в мире АЭС!

Павлюкова Виктория Александровна

АО «ГНЦ РФ-ФЭИ»

Тел.: +7 (48439)98605 E-mail: vapavlyukova@ippe.ru www.ippe.ru

30.05.2022